IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v173y2016icp52-58.html
   My bibliography  Save this article

Efficient syngas generation for electricity storage through carbon gasification assisted solid oxide co-electrolysis

Author

Listed:
  • Lei, Libin
  • Wang, Yao
  • Fang, Shumin
  • Ren, Cong
  • Liu, Tong
  • Chen, Fanglin

Abstract

High temperature CO2 and H2O co-electrolysis is a promising way to produce syngas for the storage of electrical energy harvested from renewable energy sources. However, a significant portion of electricity input is consumed to overcome a large oxygen potential gradient between the electrodes in conventional solid oxide electrolysis cells (SOECs). In this study, we present a novel and efficient syngas generator integrating carbon gasification and solid oxide co-electrolysis to improve the system efficiency. The feasibility of this new system is demonstrated in La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) electrolyte-supported SOECs. Both thermodynamic calculation and experimental results show that the potential barrier for co-electrolysis can be reduced by about 1V and the electricity input can be saved by more than 90% upon integration of SOECs with carbon gasification. On the anode side, “CO shuttle” between the electrochemical reaction sites and solid carbon is realized through the Boudouard reaction (C+CO2=2CO). Simultaneous production of CO on the anode side and CO/H2 on the cathode side generates syngas that can serve as fuel for power generation or feedstock for chemical plants. The integration of carbon gasification and SOECs provides a potential pathway for efficient utilization of electricity, coal/biomass, and CO2 to store electrical energy, produce clean fuel, and achieve a carbon neutral sustainable energy supply.

Suggested Citation

  • Lei, Libin & Wang, Yao & Fang, Shumin & Ren, Cong & Liu, Tong & Chen, Fanglin, 2016. "Efficient syngas generation for electricity storage through carbon gasification assisted solid oxide co-electrolysis," Applied Energy, Elsevier, vol. 173(C), pages 52-58.
  • Handle: RePEc:eee:appene:v:173:y:2016:i:c:p:52-58
    DOI: 10.1016/j.apenergy.2016.03.116
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191630441X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.03.116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duan, Nan-Qi & Cao, Yong & Hua, Bin & Chi, Bo & Pu, Jian & Luo, Jingli & Jian, Li, 2016. "Tubular direct carbon solid oxide fuel cells with molten antimony anode and refueling feasibility," Energy, Elsevier, vol. 95(C), pages 274-278.
    2. Jiao, Yong & Tian, Wenjuan & Chen, Huili & Shi, Huangang & Yang, Binbin & Li, Chao & Shao, Zongping & Zhu, Zhenping & Li, Si-Dian, 2015. "In situ catalyzed Boudouard reaction of coal char for solid oxide-based carbon fuel cells with improved performance," Applied Energy, Elsevier, vol. 141(C), pages 200-208.
    3. Bruce C.R. Ewan & Olalekan D. Adeniyi, 2013. "A Demonstration of Carbon-Assisted Water Electrolysis," Energies, MDPI, vol. 6(3), pages 1-12, March.
    4. Duan, Nan-Qi & Tan, Yuan & Yan, Dong & Jia, Lichao & Chi, Bo & Pu, Jian & Li, Jian, 2016. "Biomass carbon fueled tubular solid oxide fuel cells with molten antimony anode," Applied Energy, Elsevier, vol. 165(C), pages 983-989.
    5. Irfan, Muhammad F. & Usman, Muhammad R. & Kusakabe, K., 2011. "Coal gasification in CO2 atmosphere and its kinetics since 1948: A brief review," Energy, Elsevier, vol. 36(1), pages 12-40.
    6. Cinti, Giovanni & Baldinelli, Arianna & Di Michele, Alessandro & Desideri, Umberto, 2016. "Integration of Solid Oxide Electrolyzer and Fischer-Tropsch: A sustainable pathway for synthetic fuel," Applied Energy, Elsevier, vol. 162(C), pages 308-320.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Drünert, Sebastian & Neuling, Ulf & Zitscher, Tjerk & Kaltschmitt, Martin, 2020. "Power-to-Liquid fuels for aviation – Processes, resources and supply potential under German conditions," Applied Energy, Elsevier, vol. 277(C).
    2. Zhang, Yongliang & Han, Minfang, 2019. "Energy storage and syngas production by switching cathode gas in nickel-yttria stabilized zirconia supported solid oxide cell," Applied Energy, Elsevier, vol. 241(C), pages 1-10.
    3. Meng, Xiuxia & Liu, Yongna & Yang, Naitao & Tan, Xiaoyao & Liu, Jian & Diniz da Costa, João C. & Liu, Shaomin, 2017. "Highly compact and robust hollow fiber solid oxide cells for flexible power generation and gas production," Applied Energy, Elsevier, vol. 205(C), pages 741-748.
    4. Morgenthaler, Simon & Kuckshinrichs, Wilhelm & Witthaut, Dirk, 2020. "Optimal system layout and locations for fully renewable high temperature co-electrolysis," Applied Energy, Elsevier, vol. 260(C).
    5. Qi, Huiying & Zhang, Junfeng & Tu, Baofeng & Yin, Yanxia & Zhang, Tonghuan & Liu, Di & Zhang, Fujun & Su, Xin & Cui, Daan & Cheng, Mojie, 2022. "Extreme management strategy and thermodynamic analysis of high temperature H2O/CO2 co-electrolysis for energy conversion," Renewable Energy, Elsevier, vol. 183(C), pages 229-241.
    6. Pan, Zehua & Liu, Qinglin & Zhang, Lan & Zhou, Juan & Zhang, Caizhi & Chan, Siew Hwa, 2017. "Experimental and thermodynamic study on the performance of water electrolysis by solid oxide electrolyzer cells with Nb-doped Co-based perovskite anode," Applied Energy, Elsevier, vol. 191(C), pages 559-567.
    7. Shi, Kaifang & Chen, Yun & Yu, Bailang & Xu, Tingbao & Yang, Chengshu & Li, Linyi & Huang, Chang & Chen, Zuoqi & Liu, Rui & Wu, Jianping, 2016. "Detecting spatiotemporal dynamics of global electric power consumption using DMSP-OLS nighttime stable light data," Applied Energy, Elsevier, vol. 184(C), pages 450-463.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei, Libin & Keels, Jayson M. & Tao, Zetian & Zhang, Jihao & Chen, Fanglin, 2018. "Thermodynamic and experimental assessment of proton conducting solid oxide fuel cells with internal methane steam reforming," Applied Energy, Elsevier, vol. 224(C), pages 280-288.
    2. Jiang, Yidong & Gu, Xin & Shi, Jixin & Shi, Yixiang & Cai, Ningsheng, 2023. "Co-generation of gas and electricity on liquid antimony anode solid oxide fuel cells for high efficiency, long-term kerosene power generation," Energy, Elsevier, vol. 263(PC).
    3. Xie, Yongmin & Xiao, Jie & Liu, Qingsheng & Wang, Xiaoqiang & Liu, Jiang & Wu, Peijia & Ouyang, Shaobo, 2021. "Highly efficient utilization of walnut shell biochar through a facile designed portable direct carbon solid oxide fuel cell stack," Energy, Elsevier, vol. 227(C).
    4. Xu, Haoran & Chen, Bin & Liu, Jiang & Ni, Meng, 2016. "Modeling of direct carbon solid oxide fuel cell for CO and electricity cogeneration," Applied Energy, Elsevier, vol. 178(C), pages 353-362.
    5. Cao, Tianyu & Shi, Yixiang & Jiang, Yanqi & Cai, Ningsheng & Gong, Qianming, 2017. "Performance enhancement of liquid antimony anode fuel cell by in-situ electrochemical assisted oxidation process," Energy, Elsevier, vol. 125(C), pages 526-532.
    6. Lee, Sung-Wook & Park, Jong-Soo & Lee, Chun-Boo & Lee, Dong-Wook & Kim, Hakjoo & Ra, Ho Won & Kim, Sung-Hyun & Ryi, Shin-Kun, 2014. "H2 recovery and CO2 capture after water–gas shift reactor using synthesis gas from coal gasification," Energy, Elsevier, vol. 66(C), pages 635-642.
    7. Ján Kačur & Marek Laciak & Milan Durdán & Patrik Flegner, 2023. "Investigation of Underground Coal Gasification in Laboratory Conditions: A Review of Recent Research," Energies, MDPI, vol. 16(17), pages 1-55, August.
    8. Cai, Weizi & Cao, Dan & Zhou, Mingyang & Yan, Xiaomin & Li, Yuzhi & Wu, Zhen & Lü, Shengping & Mao, Caiyun & Xie, Yongmin & Zhao, Caiwen & Yu, Jialing & Ni, Meng & Liu, Jiang & Wang, Hailin, 2020. "Sulfur-tolerant Fe-doped La0·3Sr0·7TiO3 perovskite as anode of direct carbon solid oxide fuel cells," Energy, Elsevier, vol. 211(C).
    9. Im-orb, Karittha & Simasatitkul, Lida & Arpornwichanop, Amornchai, 2016. "Techno-economic analysis of the biomass gasification and Fischer–Tropsch integrated process with off-gas recirculation," Energy, Elsevier, vol. 94(C), pages 483-496.
    10. Polverino, Pierpaolo & Sorrentino, Marco & Pianese, Cesare, 2017. "A model-based diagnostic technique to enhance faults isolability in Solid Oxide Fuel Cell systems," Applied Energy, Elsevier, vol. 204(C), pages 1198-1214.
    11. Duan, Zhengxiao & Zhang, Yanni & Deng, Jun & Shu, Pan & Yao, Di, 2023. "A systematic exploration of mapping knowledge domains for free radical research related to coal," Energy, Elsevier, vol. 282(C).
    12. Prabu, V. & Geeta, K., 2015. "CO2 enhanced in-situ oxy-coal gasification based carbon-neutral conventional power generating systems," Energy, Elsevier, vol. 84(C), pages 672-683.
    13. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
    14. Prabowo, Bayu & Aziz, Muhammad & Umeki, Kentaro & Susanto, Herri & Yan, Mi & Yoshikawa, Kunio, 2015. "CO2-recycling biomass gasification system for highly efficient and carbon-negative power generation," Applied Energy, Elsevier, vol. 158(C), pages 97-106.
    15. Zhao, Jingyu & Deng, Jun & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidatio," Energy, Elsevier, vol. 169(C), pages 587-596.
    16. Samuel C. Bayham & Andrew Tong & Mandar Kathe & Liang-Shih Fan, 2016. "Chemical looping technology for energy and chemical production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(2), pages 216-241, March.
    17. Ju, HyungKuk & Badwal, Sukhvinder & Giddey, Sarbjit, 2018. "A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production," Applied Energy, Elsevier, vol. 231(C), pages 502-533.
    18. Wang, Chaoqi & Lü, Zhe & Li, Jingwei & Cao, Zhiqun & Wei, Bo & Li, Huan & Shang, Minghao & Su, Chaoxiang, 2020. "Efficient use of waste carton for power generation, tar and fertilizer through direct carbon solid oxide fuel cell," Renewable Energy, Elsevier, vol. 158(C), pages 410-420.
    19. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic evaluation of biomass-to-fuels with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 270(C).
    20. Sirui Tong & Bin Miao & Lan Zhang & Siew Hwa Chan, 2022. "Decarbonizing Natural Gas: A Review of Catalytic Decomposition and Carbon Formation Mechanisms," Energies, MDPI, vol. 15(7), pages 1-30, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:173:y:2016:i:c:p:52-58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.