IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v125y2017icp526-532.html
   My bibliography  Save this article

Performance enhancement of liquid antimony anode fuel cell by in-situ electrochemical assisted oxidation process

Author

Listed:
  • Cao, Tianyu
  • Shi, Yixiang
  • Jiang, Yanqi
  • Cai, Ningsheng
  • Gong, Qianming

Abstract

Liquid Sb anode has been intensively studied for its capability to convert various solid carbon fuels into electricity. Performance of anode is one of the most important issues. In present research, performance of liquid Sb anode SOFC is promoted by an “assisted oxidation process”: fuel cell achieved larger current by electrochemically introducing extra amount of Sb2O3 into the anode region. By revealing the interfacial structure between anode and electrolyte, the mechanism of performance promotion is then explained by numerical model from a microstructural point of view: the oxidation process built ionic transporting pathways and extended the electrochemical reactive sites in liquid Sb anode. With the help of extended electrochemical reactive sites, the fuel cell reaches a better performance. The “assisted oxidation process” can be taken as an in-situ method to refine the structure of liquid Sb anode.

Suggested Citation

  • Cao, Tianyu & Shi, Yixiang & Jiang, Yanqi & Cai, Ningsheng & Gong, Qianming, 2017. "Performance enhancement of liquid antimony anode fuel cell by in-situ electrochemical assisted oxidation process," Energy, Elsevier, vol. 125(C), pages 526-532.
  • Handle: RePEc:eee:energy:v:125:y:2017:i:c:p:526-532
    DOI: 10.1016/j.energy.2017.02.106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217302852
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.02.106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duan, Nan-Qi & Cao, Yong & Hua, Bin & Chi, Bo & Pu, Jian & Luo, Jingli & Jian, Li, 2016. "Tubular direct carbon solid oxide fuel cells with molten antimony anode and refueling feasibility," Energy, Elsevier, vol. 95(C), pages 274-278.
    2. Ahn, Seong Yool & Eom, Seong Yong & Rhie, Young Hoon & Sung, Yon Mo & Moon, Cheor Eon & Choi, Gyung Min & Kim, Duck Jool, 2013. "Application of refuse fuels in a direct carbon fuel cell system," Energy, Elsevier, vol. 51(C), pages 447-456.
    3. Eom, Seongyong & Ahn, Seongyool & Rhie, Younghoon & Kang, Kijoong & Sung, Yonmo & Moon, Cheoreon & Choi, Gyungmin & Kim, Duckjool, 2014. "Influence of devolatilized gases composition from raw coal fuel in the lab scale DCFC (direct carbon fuel cell) system," Energy, Elsevier, vol. 74(C), pages 734-740.
    4. Wang, Hongjian & Cao, Tianyu & Shi, Yixiang & Cai, Ningsheng & Yuan, Wei, 2014. "Liquid antimony anode direct carbon fuel cell fueled with mass-produced de-ash coal," Energy, Elsevier, vol. 75(C), pages 555-559.
    5. Duan, Nan-Qi & Tan, Yuan & Yan, Dong & Jia, Lichao & Chi, Bo & Pu, Jian & Li, Jian, 2016. "Biomass carbon fueled tubular solid oxide fuel cells with molten antimony anode," Applied Energy, Elsevier, vol. 165(C), pages 983-989.
    6. Hao, Wenbin & Mi, Yongli, 2016. "Evaluation of waste paper as a source of carbon fuel for hybrid direct carbon fuel cells," Energy, Elsevier, vol. 107(C), pages 122-130.
    7. Zhang, Houcheng & Chen, Liwei & Zhang, Jinjie & Chen, Jincan, 2014. "Performance analysis of a direct carbon fuel cell with molten carbonate electrolyte," Energy, Elsevier, vol. 68(C), pages 292-300.
    8. Giddey, S. & Kulkarni, A. & Munnings, C. & Badwal, S.P.S., 2014. "Performance evaluation of a tubular direct carbon fuel cell operating in a packed bed of carbon," Energy, Elsevier, vol. 68(C), pages 538-547.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eom, Seongyong & Ahn, Seongyool & Kang, Kijoong & Choi, Gyungmin, 2017. "Correlations between electrochemical resistances and surface properties of acid-treated fuel in coal fuel cells," Energy, Elsevier, vol. 140(P1), pages 885-892.
    2. Xie, Yongmin & Xiao, Jie & Liu, Qingsheng & Wang, Xiaoqiang & Liu, Jiang & Wu, Peijia & Ouyang, Shaobo, 2021. "Highly efficient utilization of walnut shell biochar through a facile designed portable direct carbon solid oxide fuel cell stack," Energy, Elsevier, vol. 227(C).
    3. Jiang, Yidong & Gu, Xin & Shi, Jixin & Shi, Yixiang & Cai, Ningsheng, 2023. "Co-generation of gas and electricity on liquid antimony anode solid oxide fuel cells for high efficiency, long-term kerosene power generation," Energy, Elsevier, vol. 263(PC).
    4. Xu, Haoran & Chen, Bin & Tan, Peng & Zhang, Houcheng & Yuan, Jinliang & Liu, Jiang & Ni, Meng, 2017. "Performance improvement of a direct carbon solid oxide fuel cell system by combining with a Stirling cycle," Energy, Elsevier, vol. 140(P1), pages 979-987.
    5. Lei, Libin & Keels, Jayson M. & Tao, Zetian & Zhang, Jihao & Chen, Fanglin, 2018. "Thermodynamic and experimental assessment of proton conducting solid oxide fuel cells with internal methane steam reforming," Applied Energy, Elsevier, vol. 224(C), pages 280-288.
    6. Hao, Wenbin & Mi, Yongli, 2016. "Evaluation of waste paper as a source of carbon fuel for hybrid direct carbon fuel cells," Energy, Elsevier, vol. 107(C), pages 122-130.
    7. Lei, Libin & Wang, Yao & Fang, Shumin & Ren, Cong & Liu, Tong & Chen, Fanglin, 2016. "Efficient syngas generation for electricity storage through carbon gasification assisted solid oxide co-electrolysis," Applied Energy, Elsevier, vol. 173(C), pages 52-58.
    8. Houcheng Zhang & Jiatang Wang & Jiapei Zhao & Fu Wang & He Miao & Jinliang Yuan, 2019. "Performance Analysis of a Hybrid System Consisting of a Molten Carbonate Direct Carbon Fuel Cell and an Absorption Refrigerator," Energies, MDPI, vol. 12(3), pages 1-13, January.
    9. Ozalp, N. & Abedini, H. & Abuseada, M. & Davis, R. & Rutten, J. & Verschoren, J. & Ophoff, C. & Moens, D., 2022. "An overview of direct carbon fuel cells and their promising potential on coupling with solar thermochemical carbon production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Han, Yuan & Zhang, Houcheng & Hu, Ziyang & Hou, Shujin, 2021. "An efficient hybrid system using a graphene-based cathode vacuum thermionic energy converter to harvest the waste heat from a molten hydroxide direct carbon fuel cell," Energy, Elsevier, vol. 223(C).
    11. Tanveer, Waqas Hassan & Abdelkareem, Mohammad Ali & Kolosz, Ben W. & Rezk, Hegazy & Andresen, John & Cha, Suk Won & Sayed, Enas Taha, 2021. "The role of vacuum based technologies in solid oxide fuel cell development to utilize industrial waste carbon for power production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    12. Kacper Świechowski & Ewa Syguła & Jacek A. Koziel & Paweł Stępień & Szymon Kugler & Piotr Manczarski & Andrzej Białowiec, 2020. "Low-Temperature Pyrolysis of Municipal Solid Waste Components and Refuse-Derived Fuel—Process Efficiency and Fuel Properties of Carbonized Solid Fuel," Data, MDPI, vol. 5(2), pages 1-8, May.
    13. Kaur, Gurpreet & Kulkarni, Aniruddha P. & Giddey, Sarbjit & Badwal, Sukhvinder P.S., 2018. "Ceramic composite cathodes for CO2 conversion to CO in solid oxide electrolysis cells," Applied Energy, Elsevier, vol. 221(C), pages 131-138.
    14. Ribeirinha, P. & Alves, I. & Vázquez, F. Vidal & Schuller, G. & Boaventura, M. & Mendes, A., 2017. "Heat integration of methanol steam reformer with a high-temperature polymeric electrolyte membrane fuel cell," Energy, Elsevier, vol. 120(C), pages 468-477.
    15. Hao, Wenbin & He, Xiaojin & Mi, Yongli, 2014. "Achieving high performance in intermediate temperature direct carbon fuel cells with renewable carbon as a fuel source," Applied Energy, Elsevier, vol. 135(C), pages 174-181.
    16. Eom, Seongyong & Na, Sangkyung & Ahn, Seongyool & Choi, Gyungmin, 2022. "Electrochemical conversion of CO2 using different electrode materials in an Li–K molten salt system," Energy, Elsevier, vol. 245(C).
    17. Duan, Nan-Qi & Cao, Yong & Hua, Bin & Chi, Bo & Pu, Jian & Luo, Jingli & Jian, Li, 2016. "Tubular direct carbon solid oxide fuel cells with molten antimony anode and refueling feasibility," Energy, Elsevier, vol. 95(C), pages 274-278.
    18. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Foley, Aoife M. & Rooney, David, 2022. "Decarbonizing the pulp and paper industry: A critical and systematic review of sociotechnical developments and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    19. Ahmadi, Mohammad H. & Jokar, Mohammad Ali & Ming, Tingzhen & Feidt, Michel & Pourfayaz, Fathollah & Astaraei, Fatemeh Razi, 2018. "Multi-objective performance optimization of irreversible molten carbonate fuel cell–Braysson heat engine and thermodynamic analysis with ecological objective approach," Energy, Elsevier, vol. 144(C), pages 707-722.
    20. Eom, Seongyong & Ahn, Seongyool & Rhie, Younghoon & Kang, Kijoong & Sung, Yonmo & Moon, Cheoreon & Choi, Gyungmin & Kim, Duckjool, 2014. "Influence of devolatilized gases composition from raw coal fuel in the lab scale DCFC (direct carbon fuel cell) system," Energy, Elsevier, vol. 74(C), pages 734-740.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:125:y:2017:i:c:p:526-532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.