IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v144y2018icp707-722.html
   My bibliography  Save this article

Multi-objective performance optimization of irreversible molten carbonate fuel cell–Braysson heat engine and thermodynamic analysis with ecological objective approach

Author

Listed:
  • Ahmadi, Mohammad H.
  • Jokar, Mohammad Ali
  • Ming, Tingzhen
  • Feidt, Michel
  • Pourfayaz, Fathollah
  • Astaraei, Fatemeh Razi

Abstract

High technology energy systems have generated a lot of interest due to their significant contribution to efficient and environmentally friendly energy production. Among them there are hybrid cycles which usually have higher energy efficiencies and can provide different forms of energy at the same time. The present research poses a question concerning thermodynamic performance of a molten carbonate fuel cell (MCFC)-Braysson heat engine, conducting a multi-objective optimization study, to give a general description of this hybrid cycle. For this purpose, energy efficiency, power density and exergy destruction rate density are considered as the objective functions in conjunction with ecological function density. First, a parametric evaluation is conducted in order to study the effect of the decision variables on the targets separately. These variables include current density of the fuel cell, turbine inlet temperature, effectiveness of the hot side of the heat exchanger which recovers the waste heat of the fuel cell to run the Braysson cycle, and ratio of heat capacity to heat conductance of the cold side of the heat exchanger which rejects the extra low-temperature heat of the Braysson cycle to the environment. Afterwards, due to the great conflict between the objective functions, three case scenarios of triple multi-objective optimization are defined, considering different combinations of the objective functions; and a Pareto front is obtained for each. Multi-objective evolutionary algorithm joined with non-dominated sorting genetic algorithm approach is employed to this aim. In order to ascertain final solutions between Pareto fronts, three fast and robust decision making methods are employed including LINMAP, TOPSIS and Fuzzy. Finally, the relationship between the objective functions is studied.

Suggested Citation

  • Ahmadi, Mohammad H. & Jokar, Mohammad Ali & Ming, Tingzhen & Feidt, Michel & Pourfayaz, Fathollah & Astaraei, Fatemeh Razi, 2018. "Multi-objective performance optimization of irreversible molten carbonate fuel cell–Braysson heat engine and thermodynamic analysis with ecological objective approach," Energy, Elsevier, vol. 144(C), pages 707-722.
  • Handle: RePEc:eee:energy:v:144:y:2018:i:c:p:707-722
    DOI: 10.1016/j.energy.2017.12.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217320479
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.12.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chandramouli, R. & Srinivasa Rao, M.S.S. & Ramji, K., 2015. "Energy and exergy based thermodynamic analysis of reheat and regenerative Braysson cycle," Energy, Elsevier, vol. 90(P2), pages 1848-1858.
    2. Baronci, Andrea & Messina, Giuseppe & McPhail, Stephen J. & Moreno, Angelo, 2015. "Numerical investigation of a MCFC (Molten Carbonate Fuel Cell) system hybridized with a supercritical CO2 Brayton cycle and compared with a bottoming Organic Rankine Cycle," Energy, Elsevier, vol. 93(P1), pages 1063-1073.
    3. Chandramouli, R. & Srinivasa Rao, M.S.S. & Ramji, K., 2015. "Parametric and optimization studies of reheat and regenerative Braysson cycle," Energy, Elsevier, vol. 93(P2), pages 2146-2156.
    4. Ahmadi, Mohammad Hossein & Ahmadi, Mohammad Ali, 2016. "Multi objective optimization of performance of three-heat-source irreversible refrigerators based algorithm NSGAII," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 784-794.
    5. Zheng, Shiyan & Chen, Jincan & Lin, Guoxing, 2005. "Performance characteristics of an irreversible solar-driven Braysson heat engine at maximum efficiency," Renewable Energy, Elsevier, vol. 30(4), pages 601-610.
    6. Zhang, Houcheng & Chen, Liwei & Zhang, Jinjie & Chen, Jincan, 2014. "Performance analysis of a direct carbon fuel cell with molten carbonate electrolyte," Energy, Elsevier, vol. 68(C), pages 292-300.
    7. Konak, Abdullah & Coit, David W. & Smith, Alice E., 2006. "Multi-objective optimization using genetic algorithms: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 992-1007.
    8. Mohammad Hossein Ahmadi & Mohammad Ali Ahmadi & Arash Shafaei & Milad Ashouri & Somayeh Toghyani, 2016. "Thermodynamic analysis and optimization of the Atkinson engine by using NSGA-II," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 11(3), pages 317-324.
    9. Sayyaadi, Hoseyn & Mehrabipour, Reza, 2012. "Efficiency enhancement of a gas turbine cycle using an optimized tubular recuperative heat exchanger," Energy, Elsevier, vol. 38(1), pages 362-375.
    10. Ahmadi, Mohammad H. & Ahmadi, Mohammad Ali & Sadatsakkak, Seyed Abbas, 2015. "Thermodynamic analysis and performance optimization of irreversible Carnot refrigerator by using multi-objective evolutionary algorithms (MOEAs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1055-1070.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Büyüközkan, Gülçin & Karabulut, Yağmur & Mukul, Esin, 2018. "A novel renewable energy selection model for United Nations' sustainable development goals," Energy, Elsevier, vol. 165(PA), pages 290-302.
    2. Shahriyar Abedinnezhad & Mohammad Hossein Ahmadi & Seyed Mohsen Pourkiaei & Fathollah Pourfayaz & Amir Mosavi & Michel Feidt & Shahaboddin Shamshirband, 2019. "Thermodynamic Assessment and Multi-Objective Optimization of Performance of Irreversible Dual-Miller Cycle," Energies, MDPI, vol. 12(20), pages 1-25, October.
    3. Hongwei Zhu & Lingen Chen & Yanlin Ge & Shuangshuang Shi & Huijun Feng, 2022. "Multi-Objective Constructal Design for Square Heat-Generation Body with “Arrow-Shaped” High-Thermal-Conductivity Channel," Energies, MDPI, vol. 15(14), pages 1-15, July.
    4. Chen, Lingen & Shi, Shuangshuang & Ge, Yanlin & Feng, Huijun, 2023. "Power density performances and multi-objective optimizations for an irreversible Otto cycle with five specific heat models of working fluid," Energy, Elsevier, vol. 282(C).
    5. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2021. "Thermal energy recovery of molten carbonate fuel cells by thermally regenerative electrochemical cycles," Energy, Elsevier, vol. 227(C).
    6. Frangopoulos, Christos A., 2018. "Recent developments and trends in optimization of energy systems," Energy, Elsevier, vol. 164(C), pages 1011-1020.
    7. Liu, Yang & Han, Jitian & You, Huailiang, 2020. "Exergoeconomic analysis and multi-objective optimization of a CCHP system based on LNG cold energy utilization and flue gas waste heat recovery with CO2 capture," Energy, Elsevier, vol. 190(C).
    8. Akrami, Ehsan & Ameri, Mohammad & Rocco, Matteo V., 2021. "Conceptual design, exergoeconomic analysis and multi-objective optimization for a novel integration of biomass-fueled power plant with MCFC-cryogenic CO2 separation unit for low-carbon power productio," Energy, Elsevier, vol. 227(C).
    9. Bahram Ghorbani, 2021. "Development of an Integrated Structure for the Tri-Generation of Power, Liquid Carbon Dioxide, and Medium Pressure Steam Using a Molten Carbonate Fuel Cell, a Dual Pressure Linde-Hampson Liquefaction ," Sustainability, MDPI, vol. 13(15), pages 1-21, July.
    10. Yin, Yong & Chen, Lingen & Wu, Feng & Ge, Yanlin, 2020. "Work output and thermal efficiency of an endoreversible entangled quantum Stirling engine with one dimensional isotropic Heisenberg model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    11. Shuangshuang Shi & Yanlin Ge & Lingen Chen & Huijun Feng, 2021. "Performance Optimizations with Single-, Bi-, Tri-, and Quadru-Objective for Irreversible Atkinson Cycle with Nonlinear Variation of Working Fluid’s Specific Heat," Energies, MDPI, vol. 14(14), pages 1-23, July.
    12. Paredes-Sánchez, J.P. & Míguez, J.L. & Blanco, D. & Rodríguez, M.A. & Collazo, J., 2019. "Assessment of micro-cogeneration network in European mining areas: A prototype system," Energy, Elsevier, vol. 174(C), pages 350-358.
    13. Zhang, Debao & Liu, Junwei & Jiao, Shifei & Tian, Hao & Lou, Chengzhi & Zhou, Zhihua & Zhang, Ji & Wang, Chendong & Zuo, Jian, 2019. "Research on the configuration and operation effect of the hybrid solar-wind-battery power generation system based on NSGA-II," Energy, Elsevier, vol. 189(C).
    14. Yang, Fusheng & Wu, Zhen & Liu, Shengzhe & Zhang, Yang & Wang, Geoff & Zhang, Zaoxiao & Wang, Yuqi, 2018. "Theoretical formulation and performance analysis of a novel hydride heat Pump(HHP) integrated heat recovery system," Energy, Elsevier, vol. 163(C), pages 208-220.
    15. Chen, Lingen & Liu, Xiaowei & Wu, Feng & Xia, Shaojun & Feng, Huijun, 2020. "Exergy-based ecological optimization of an irreversible quantum Carnot heat pump with harmonic oscillators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    16. Badur, Janusz & Lemański, Marcin & Kowalczyk, Tomasz & Ziółkowski, Paweł & Kornet, Sebastian, 2018. "Zero-dimensional robust model of an SOFC with internal reforming for hybrid energy cycles," Energy, Elsevier, vol. 158(C), pages 128-138.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadi, Mohammad H. & Ahmadi, Mohammad-Ali & Maleki, Akbar & Pourfayaz, Fathollah & Bidi, Mokhtar & Açıkkalp, Emin, 2017. "Exergetic sustainability evaluation and multi-objective optimization of performance of an irreversible nanoscale Stirling refrigeration cycle operating with Maxwell–Boltzmann gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 80-92.
    2. Ahmadi, Mohammad H. & Amin Nabakhteh, Mohammad & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah & Bidi, Mokhtar, 2017. "Investigation and optimization of performance of nano-scale Stirling refrigerator using working fluid as Maxwell–Boltzmann gases," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 337-350.
    3. Li, Yuqiang & Liu, Gang & Liu, Xianping & Liao, Shengming, 2016. "Thermodynamic multi-objective optimization of a solar-dish Brayton system based on maximum power output, thermal efficiency and ecological performance," Renewable Energy, Elsevier, vol. 95(C), pages 465-473.
    4. Mohammad Hossein Ahmadi & Seyed Ali Banihashem & Mahyar Ghazvini & Milad Sadeghzadeh, 2018. "Thermo-economic and exergy assessment and optimization of performance of a hydrogen production system by using geothermal energy," Energy & Environment, , vol. 29(8), pages 1373-1392, December.
    5. Shahriyar Abedinnezhad & Mohammad Hossein Ahmadi & Seyed Mohsen Pourkiaei & Fathollah Pourfayaz & Amir Mosavi & Michel Feidt & Shahaboddin Shamshirband, 2019. "Thermodynamic Assessment and Multi-Objective Optimization of Performance of Irreversible Dual-Miller Cycle," Energies, MDPI, vol. 12(20), pages 1-25, October.
    6. Meng, Fankai & Chen, Lingen & Feng, Yuanli & Xiong, Bing, 2017. "Thermoelectric generator for industrial gas phase waste heat recovery," Energy, Elsevier, vol. 135(C), pages 83-90.
    7. Ahmadi, Mohammad H. & Ahmadi, Mohammad Ali & Pourfayaz, Fathollah & Hosseinzade, Hadi & Acıkkalp, Emin & Tlili, Iskander & Feidt, Michel, 2016. "Designing a powered combined Otto and Stirling cycle power plant through multi-objective optimization approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 585-595.
    8. Shirazi, Ali & Najafi, Behzad & Aminyavari, Mehdi & Rinaldi, Fabio & Taylor, Robert A., 2014. "Thermal–economic–environmental analysis and multi-objective optimization of an ice thermal energy storage system for gas turbine cycle inlet air cooling," Energy, Elsevier, vol. 69(C), pages 212-226.
    9. Ahmadi, Mohammad Hossein & Ahmadi, Mohammad Ali, 2016. "Multi objective optimization of performance of three-heat-source irreversible refrigerators based algorithm NSGAII," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 784-794.
    10. Ghersi, Djamal Eddine & Amoura, Meriem & Loubar, Khaled & Desideri, Umberto & Tazerout, Mohand, 2021. "Multi-objective optimization of CCHP system with hybrid chiller under new electric load following operation strategy," Energy, Elsevier, vol. 219(C).
    11. Chen, Lingen & Zhang, Lei & Xia, Shaojun & Sun, Fengrui, 2018. "Entropy generation minimization for CO2 hydrogenation to light olefins," Energy, Elsevier, vol. 147(C), pages 187-196.
    12. Houcheng Zhang & Jiatang Wang & Jiapei Zhao & Fu Wang & He Miao & Jinliang Yuan, 2019. "Performance Analysis of a Hybrid System Consisting of a Molten Carbonate Direct Carbon Fuel Cell and an Absorption Refrigerator," Energies, MDPI, vol. 12(3), pages 1-13, January.
    13. Keshtkar, Mohammad Mehdi & Talebizadeh, Pouyan, 2017. "Multi-objective optimization of cooling water package based on 3E analysis: A case study," Energy, Elsevier, vol. 134(C), pages 840-849.
    14. Chandramouli, R. & Srinivasa Rao, M.S.S. & Ramji, K., 2015. "Parametric and optimization studies of reheat and regenerative Braysson cycle," Energy, Elsevier, vol. 93(P2), pages 2146-2156.
    15. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2021. "Thermal energy recovery of molten carbonate fuel cells by thermally regenerative electrochemical cycles," Energy, Elsevier, vol. 227(C).
    16. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    17. Weifan Zhong & Lijing Du, 2023. "Predicting Traffic Casualties Using Support Vector Machines with Heuristic Algorithms: A Study Based on Collision Data of Urban Roads," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    18. Zhang, Yue & Zhang, Qi & Farnoosh, Arash & Chen, Siyuan & Li, Yan, 2019. "GIS-Based Multi-Objective Particle Swarm Optimization of charging stations for electric vehicles," Energy, Elsevier, vol. 169(C), pages 844-853.
    19. J. Octavio Gutierrez-Garcia & Kwang Mong Sim, 2012. "GA-based cloud resource estimation for agent-based execution of bag-of-tasks applications," Information Systems Frontiers, Springer, vol. 14(4), pages 925-951, September.
    20. Wu, Heng & Ge, Yanlin & Chen, Lingen & Feng, Huijun, 2021. "Power, efficiency, ecological function and ecological coefficient of performance optimizations of irreversible Diesel cycle based on finite piston speed," Energy, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:144:y:2018:i:c:p:707-722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.