IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v5y2020i2p48-d361214.html
   My bibliography  Save this article

Low-Temperature Pyrolysis of Municipal Solid Waste Components and Refuse-Derived Fuel—Process Efficiency and Fuel Properties of Carbonized Solid Fuel

Author

Listed:
  • Kacper Świechowski

    (Faculty of Life Sciences and Technology, Institute of Agricultural Engineering, Wrocław University of Environmental and Life Sciences, 37/41 Chełmońskiego Str., 51-630 Wrocław, Poland)

  • Ewa Syguła

    (Faculty of Life Sciences and Technology, Institute of Agricultural Engineering, Wrocław University of Environmental and Life Sciences, 37/41 Chełmońskiego Str., 51-630 Wrocław, Poland)

  • Jacek A. Koziel

    (Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA)

  • Paweł Stępień

    (Faculty of Life Sciences and Technology, Institute of Agricultural Engineering, Wrocław University of Environmental and Life Sciences, 37/41 Chełmońskiego Str., 51-630 Wrocław, Poland)

  • Szymon Kugler

    (Polymer Institute, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, 10 Pułaskiego Str., 70-322 Szczecin, Poland)

  • Piotr Manczarski

    (Department of Environmental Engineering, Hydro and Environmental Engineering, Faculty of Building Services, Warsaw University of Technology, 00-661 Warszawa, Poland)

  • Andrzej Białowiec

    (Faculty of Life Sciences and Technology, Institute of Agricultural Engineering, Wrocław University of Environmental and Life Sciences, 37/41 Chełmońskiego Str., 51-630 Wrocław, Poland
    Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA)

Abstract

New technologies to valorize refuse-derived fuels (RDFs) will be required in the near future due to emerging trends of (1) the cement industry’s demands for high-quality alternative fuels and (2) the decreasing calorific value of the fuels derived from municipal solid waste (MSW) and currently used in cement/incineration plants. Low-temperature pyrolysis can increase the calorific value of processed material, leading to the production of value-added carbonized solid fuel (CSF). This dataset summarizes the key properties of MSW-derived CSF. Pyrolysis experiments were completed using eight types of organic waste and their two RDF mixtures. Organic waste represented common morphological groups of MSW, i.e., cartons, fabrics, kitchen waste, paper, plastic, rubber, PAP/AL/PE composite packaging (multi-material packaging also known as Tetra Pak cartons), and wood. The pyrolysis was conducted at temperatures ranging from 300 to 500 °C (20 °C intervals), with a retention (process) time of 20 to 60 min (20 min intervals). The mass yield, energy densification ratio, and energy yield were determined to characterize the pyrolysis process efficiency. The raw materials and produced CSF were tested with proximate analyses (moisture content, organic matter content, ash content, and combustible part content) and with ultimate analyses (elemental composition C, H, N, S) and high heating value (HHV). Additionally, differential scanning calorimetry (DSC) and thermogravimetric analyses (TGA) of the pyrolysis process were performed. The dataset documents the changes in fuel properties of RDF resulting from low-temperature pyrolysis as a function of the pyrolysis conditions and feedstock type. The greatest HHV improvements were observed for fabrics (up to 65%), PAP/AL/PE composite packaging (up to 56%), and wood (up to 46%).

Suggested Citation

  • Kacper Świechowski & Ewa Syguła & Jacek A. Koziel & Paweł Stępień & Szymon Kugler & Piotr Manczarski & Andrzej Białowiec, 2020. "Low-Temperature Pyrolysis of Municipal Solid Waste Components and Refuse-Derived Fuel—Process Efficiency and Fuel Properties of Carbonized Solid Fuel," Data, MDPI, vol. 5(2), pages 1-8, May.
  • Handle: RePEc:gam:jdataj:v:5:y:2020:i:2:p:48-:d:361214
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/5/2/48/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/5/2/48/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paweł Stępień & Kacper Świechowski & Martyna Hnat & Szymon Kugler & Sylwia Stegenta-Dąbrowska & Jacek A. Koziel & Piotr Manczarski & Andrzej Białowiec, 2019. "Waste to Carbon: Biocoal from Elephant Dung as New Cooking Fuel," Energies, MDPI, vol. 12(22), pages 1-32, November.
    2. Paweł Stępień & Małgorzata Serowik & Jacek A. Koziel & Andrzej Białowiec, 2019. "Waste to Carbon: Estimating the Energy Demand for Production of Carbonized Refuse-Derived Fuel," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    3. Kacper Świechowski & Marek Liszewski & Przemysław Bąbelewski & Jacek A. Koziel & Andrzej Białowiec, 2019. "Fuel Properties of Torrefied Biomass from Pruning of Oxytree," Data, MDPI, vol. 4(2), pages 1-10, April.
    4. Paweł Stępień & Małgorzata Serowik & Jacek A. Koziel & Andrzej Białowiec, 2019. "Waste to Carbon Energy Demand Model and Data Based on the TGA and DSC Analysis of Individual MSW Components," Data, MDPI, vol. 4(2), pages 1-6, April.
    5. Ahn, Seong Yool & Eom, Seong Yong & Rhie, Young Hoon & Sung, Yon Mo & Moon, Cheor Eon & Choi, Gyung Min & Kim, Duck Jool, 2013. "Application of refuse fuels in a direct carbon fuel cell system," Energy, Elsevier, vol. 51(C), pages 447-456.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adrian Knapczyk & Sławomir Francik & Marcin Jewiarz & Agnieszka Zawiślak & Renata Francik, 2020. "Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case," Energies, MDPI, vol. 14(1), pages 1-31, December.
    2. Jakub Mazurkiewicz, 2022. "The Biogas Potential of Oxytree Leaves," Energies, MDPI, vol. 15(23), pages 1-16, November.
    3. Tanveer, Waqas Hassan & Abdelkareem, Mohammad Ali & Kolosz, Ben W. & Rezk, Hegazy & Andresen, John & Cha, Suk Won & Sayed, Enas Taha, 2021. "The role of vacuum based technologies in solid oxide fuel cell development to utilize industrial waste carbon for power production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    4. Hao Luo & Lukasz Niedzwiecki & Amit Arora & Krzysztof Mościcki & Halina Pawlak-Kruczek & Krystian Krochmalny & Marcin Baranowski & Mayank Tiwari & Anshul Sharma & Tanuj Sharma & Zhimin Lu, 2020. "Influence of Torrefaction and Pelletizing of Sawdust on the Design Parameters of a Fixed Bed Gasifier," Energies, MDPI, vol. 13(11), pages 1-19, June.
    5. Dona Schneider & Michael R. Greenberg, 2023. "Remediating and Reusing Abandoned Mining Sites in U.S. Metropolitan Areas: Raising Visibility and Value," Sustainability, MDPI, vol. 15(9), pages 1-21, April.
    6. Hao, Wenbin & Mi, Yongli, 2016. "Evaluation of waste paper as a source of carbon fuel for hybrid direct carbon fuel cells," Energy, Elsevier, vol. 107(C), pages 122-130.
    7. Hao, Wenbin & He, Xiaojin & Mi, Yongli, 2014. "Achieving high performance in intermediate temperature direct carbon fuel cells with renewable carbon as a fuel source," Applied Energy, Elsevier, vol. 135(C), pages 174-181.
    8. Kacper Świechowski & Martyna Hnat & Paweł Stępień & Sylwia Stegenta-Dąbrowska & Szymon Kugler & Jacek A. Koziel & Andrzej Białowiec, 2020. "Waste to Energy: Solid Fuel Production from Biogas Plant Digestate and Sewage Sludge by Torrefaction-Process Kinetics, Fuel Properties, and Energy Balance," Energies, MDPI, vol. 13(12), pages 1-37, June.
    9. Izabella Maj & Sylwester Kalisz & Szymon Ciukaj, 2022. "Properties of Animal-Origin Ash—A Valuable Material for Circular Economy," Energies, MDPI, vol. 15(4), pages 1-15, February.
    10. Bartosz Matyjewicz & Kacper Świechowski & Jacek A. Koziel & Andrzej Białowiec, 2020. "Proof-of-Concept of High-Pressure Torrefaction for Improvement of Pelletized Biomass Fuel Properties and Process Cost Reduction," Energies, MDPI, vol. 13(18), pages 1-27, September.
    11. Eom, Seongyong & Na, Sangkyung & Ahn, Seongyool & Choi, Gyungmin, 2022. "Electrochemical conversion of CO2 using different electrode materials in an Li–K molten salt system," Energy, Elsevier, vol. 245(C).
    12. Eom, Seongyong & Ahn, Seongyool & Kang, Kijoong & Choi, Gyungmin, 2017. "Correlations between electrochemical resistances and surface properties of acid-treated fuel in coal fuel cells," Energy, Elsevier, vol. 140(P1), pages 885-892.
    13. Eom, Seongyong & Ahn, Seongyool & Rhie, Younghoon & Kang, Kijoong & Sung, Yonmo & Moon, Cheoreon & Choi, Gyungmin & Kim, Duckjool, 2014. "Influence of devolatilized gases composition from raw coal fuel in the lab scale DCFC (direct carbon fuel cell) system," Energy, Elsevier, vol. 74(C), pages 734-740.
    14. Paolino Caputo & Pietro Calandra & Valeria Loise & Adolfo Le Pera & Ana-Maria Putz & Abraham A. Abe & Luigi Madeo & Bagdat Teltayev & Maria Laura Luprano & Michela Alfè & Valentina Gargiulo & Giovanna, 2022. "When Physical Chemistry Meets Circular Economy to Solve Environmental Issues: How the ReScA Project Aims at Using Waste Pyrolysis Products to Improve and Rejuvenate Bitumens," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    15. Zhang, Houcheng & Chen, Liwei & Zhang, Jinjie & Chen, Jincan, 2014. "Performance analysis of a direct carbon fuel cell with molten carbonate electrolyte," Energy, Elsevier, vol. 68(C), pages 292-300.
    16. Xie, Heping & Zhai, Shuo & Chen, Bin & Liu, Tao & Zhang, Yuan & Ni, Meng & Shao, Zongping, 2020. "Coal pretreatment and Ag-infiltrated anode for high-performance hybrid direct coal fuel cell," Applied Energy, Elsevier, vol. 260(C).
    17. Ansari, Khursheed B. & Kamal, Bushra & Beg, Sidra & Wakeel Khan, Md. Aquib & Khan, Mohd Shariq & Al Mesfer, Mohammed K. & Danish, Mohd., 2021. "Recent developments in investigating reaction chemistry and transport effects in biomass fast pyrolysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    18. Cao, Tianyu & Shi, Yixiang & Jiang, Yanqi & Cai, Ningsheng & Gong, Qianming, 2017. "Performance enhancement of liquid antimony anode fuel cell by in-situ electrochemical assisted oxidation process," Energy, Elsevier, vol. 125(C), pages 526-532.
    19. Eliseu Monteiro & Sérgio Ferreira, 2022. "Biomass Waste for Energy Production," Energies, MDPI, vol. 15(16), pages 1-5, August.
    20. Andrzej Kacprzak & Renata Włodarczyk, 2023. "Utilization of Organic Waste in a Direct Carbon Fuel Cell for Sustainable Electricity Generation," Energies, MDPI, vol. 16(21), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:5:y:2020:i:2:p:48-:d:361214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.