IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v102y2013icp657-664.html
   My bibliography  Save this item

Life cycle assessment of a small-scale anaerobic digestion plant from cattle waste

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Whiting, Andrew & Azapagic, Adisa, 2014. "Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion," Energy, Elsevier, vol. 70(C), pages 181-193.
  2. Sadhukhan, Jhuma, 2014. "Distributed and micro-generation from biogas and agricultural application of sewage sludge: Comparative environmental performance analysis using life cycle approaches," Applied Energy, Elsevier, vol. 122(C), pages 196-206.
  3. Li, Wangliang & Loh, Kai-Chee & Zhang, Jingxin & Tong, Yen Wah & Dai, Yanjun, 2018. "Two-stage anaerobic digestion of food waste and horticultural waste in high-solid system," Applied Energy, Elsevier, vol. 209(C), pages 400-408.
  4. Yasar, Abdullah & Rasheed, Rizwan & Tabinda, Amtul Bari & Tahir, Aleena & Sarwar, Friha, 2017. "Life cycle assessment of a medium commercial scale biogas plant and nutritional assessment of effluent slurry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 364-371.
  5. Takata, Miki & Fukushima, Kazuyo & Kawai, Minako & Nagao, Norio & Niwa, Chiaki & Yoshida, Teruaki & Toda, Tatsuki, 2013. "The choice of biological waste treatment method for urban areas in Japan—An environmental perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 557-567.
  6. Hijazi, O. & Munro, S. & Zerhusen, B. & Effenberger, M., 2016. "Review of life cycle assessment for biogas production in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1291-1300.
  7. Pierie, F. & Benders, R.M.J. & Bekkering, J. & van Gemert, W.J.Th. & Moll, H.C., 2016. "Lessons from spatial and environmental assessment of energy potentials for Anaerobic Digestion production systems applied to the Netherlands," Applied Energy, Elsevier, vol. 176(C), pages 233-244.
  8. Shakira R. Hobbs & Tyler M. Harris & William J. Barr & Amy E. Landis, 2021. "Life Cycle Assessment of Bioplastics and Food Waste Disposal Methods," Sustainability, MDPI, vol. 13(12), pages 1-14, June.
  9. Izabela Samson-Bręk & Marlena Owczuk & Anna Matuszewska & Krzysztof Biernat, 2022. "Environmental Assessment of the Life Cycle of Electricity Generation from Biogas in Polish Conditions," Energies, MDPI, vol. 15(15), pages 1-22, August.
  10. Pierie, F. & van Someren, C.E.J. & Benders, R.M.J. & Bekkering, J. & van Gemert, W.J.Th. & Moll, H.C., 2015. "Environmental and energy system analysis of bio-methane production pathways: A comparison between feedstocks and process optimizations," Applied Energy, Elsevier, vol. 160(C), pages 456-466.
  11. Lauer, Markus & Hansen, Jason K. & Lamers, Patrick & Thrän, Daniela, 2018. "Making money from waste: The economic viability of producing biogas and biomethane in the Idaho dairy industry," Applied Energy, Elsevier, vol. 222(C), pages 621-636.
  12. Rillo, E. & Gandiglio, M. & Lanzini, A. & Bobba, S. & Santarelli, M. & Blengini, G., 2017. "Life Cycle Assessment (LCA) of biogas-fed Solid Oxide Fuel Cell (SOFC) plant," Energy, Elsevier, vol. 126(C), pages 585-602.
  13. Congguang Zhang & Jiaming Sun & Jieying Ma & Fuqing Xu & Ling Qiu, 2019. "Environmental Assessment of a Hybrid Solar-Biomass Energy Supplying System: A Case Study," IJERPH, MDPI, vol. 16(12), pages 1-14, June.
  14. Freitas, F.F. & Furtado, A.C. & Piñas, J.A.V. & Venturini, O.J. & Barros, R.M. & Lora, E.E.S., 2022. "Holistic Life Cycle Assessment of a biogas-based electricity generation plant in a pig farm considering co-digestion and an additive," Energy, Elsevier, vol. 261(PB).
  15. Mohammadrezaei, Rashed & Zareei, Samira & Behroozi- Khazaei, Nasser, 2018. "Optimum mixing rate in biogas reactors: Energy balance calculations and computational fluid dynamics simulation," Energy, Elsevier, vol. 159(C), pages 54-60.
  16. Sica, Daniela & Esposito, Benedetta & Supino, Stefania & Malandrino, Ornella & Sessa, Maria Rosaria, 2023. "Biogas-based systems: An opportunity towards a post-fossil and circular economy perspective in Italy," Energy Policy, Elsevier, vol. 182(C).
  17. Ola Stedje Hanserud & Kari-Anne Lyng & Jerke W. De Vries & Anne Falk Øgaard & Helge Brattebø, 2017. "Redistributing Phosphorus in Animal Manure from a Livestock-Intensive Region to an Arable Region: Exploration of Environmental Consequences," Sustainability, MDPI, vol. 9(4), pages 1-21, April.
  18. Wei En Tan & Peng Yen Liew & Lian See Tan & Kok Sin Woon & Nor Erniza Mohammad Rozali & Wai Shin Ho & Jamian NorRuwaida, 2022. "Life Cycle Assessment and Techno-Economic Analysis for Anaerobic Digestion as Cow Manure Management System," Energies, MDPI, vol. 15(24), pages 1-16, December.
  19. Adams, P.W.R. & Mezzullo, W.G. & McManus, M.C., 2015. "Biomass sustainability criteria: Greenhouse gas accounting issues for biogas and biomethane facilities," Energy Policy, Elsevier, vol. 87(C), pages 95-109.
  20. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.
  21. Esteves, Elisa M.M. & Brigagão, George V. & Morgado, Cláudia R.V., 2021. "Multi-objective optimization of integrated crop-livestock system for biofuels production: A life-cycle approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
  22. Yuan, Xinsong & He, Tao & Cao, Hongliang & Yuan, Qiaoxia, 2017. "Cattle manure pyrolysis process: Kinetic and thermodynamic analysis with isoconversional methods," Renewable Energy, Elsevier, vol. 107(C), pages 489-496.
  23. Yazan, Devrim Murat & Fraccascia, Luca & Mes, Martijn & Zijm, Henk, 2018. "Cooperation in manure-based biogas production networks: An agent-based modeling approach," Applied Energy, Elsevier, vol. 212(C), pages 820-833.
  24. Djatkov, Djordje & Effenberger, Mathias & Martinov, Milan, 2014. "Method for assessing and improving the efficiency of agricultural biogas plants based on fuzzy logic and expert systems," Applied Energy, Elsevier, vol. 134(C), pages 163-175.
  25. Wenyao Jin & Xiaochen Xu & Fenglin Yang, 2018. "Application of Rumen Microorganisms for Enhancing Biogas Production of Corn Straw and Livestock Manure in a Pilot-Scale Anaerobic Digestion System: Performance and Microbial Community Analysis," Energies, MDPI, vol. 11(4), pages 1-17, April.
  26. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Piotr Banaszuk, 2020. "GHG Emissions and Efficiency of Energy Generation through Anaerobic Fermentation of Wetland Biomass," Energies, MDPI, vol. 13(24), pages 1-25, December.
  27. Frank Pierie & Austin Dsouza & Christian E. J. Van Someren & René M. J. Benders & Wim J. Th. Van Gemert & Henri C. Moll, 2017. "Improving the Sustainability of Farming Practices through the Use of a Symbiotic Approach for Anaerobic Digestion and Digestate Processing," Resources, MDPI, vol. 6(4), pages 1-23, September.
  28. Tiwary, A. & Williams, I.D. & Pant, D.C. & Kishore, V.V.N., 2015. "Emerging perspectives on environmental burden minimisation initiatives from anaerobic digestion technologies for community scale biomass valorisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 883-901.
  29. Pierie, F. & Bekkering, J. & Benders, R.M.J. & van Gemert, W.J.Th. & Moll, H.C., 2016. "A new approach for measuring the environmental sustainability of renewable energy production systems: Focused on the modelling of green gas production pathways," Applied Energy, Elsevier, vol. 162(C), pages 131-138.
  30. Heydari, Ali & Askarzadeh, Alireza, 2016. "Optimization of a biomass-based photovoltaic power plant for an off-grid application subject to loss of power supply probability concept," Applied Energy, Elsevier, vol. 165(C), pages 601-611.
  31. Chong, Yih Tng & Teo, Kwong Meng & Tang, Loon Ching, 2016. "A lifecycle-based sustainability indicator framework for waste-to-energy systems and a proposed metric of sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 797-809.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.