IDEAS home Printed from https://ideas.repec.org/r/ecm/emetrp/v62y1994i6p1445-52.html

Heterogeneous Demand and Order of Resource Extraction

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Benchekroun, Hassan & Halsema, Alex & Withagen, Cees, 2009. "On nonrenewable resource oligopolies: The asymmetric case," Journal of Economic Dynamics and Control, Elsevier, vol. 33(11), pages 1867-1879, November.
  2. Moreaux, Michel & Ricci, Francesco, 2005. "The simple analytics of developing resources from resources," Resource and Energy Economics, Elsevier, vol. 27(1), pages 41-63, January.
  3. Meier, Felix D. & Quaas, Martin F., 2021. "Booming gas – A theory of endogenous technological change in resource extraction," Journal of Environmental Economics and Management, Elsevier, vol. 107(C).
  4. Roumasset James & Wada Christopher A, 2011. "Ordering Renewable Resources: Groundwater, Recycling, and Desalination," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 11(1), pages 1-29, May.
  5. Frederick Van der Ploeg & Cees A. Withagen, 2011. "Too Little Oil, Too Much Coal: Optimal Carbon Tax and when to Phase in Oil, Coal and Renewables," CESifo Working Paper Series 3526, CESifo.
  6. Gaudet, Gerard & Moreaux, Michel & Withagen, Cees, 2006. "The Alberta dilemma: Optimal sharing of a water resource by an agricultural and an oil sector," Journal of Environmental Economics and Management, Elsevier, vol. 52(2), pages 548-566, September.
  7. James Roumasset & Christopher Wada, 2009. "Renewable Resource Management with Alternative Sources: the Case of Multiple Aquifers and a "Backstop" Resource," Working Papers 200913, University of Hawaii at Manoa, Department of Economics.
  8. Im, Eric Iksoon & Chakravorty, Ujjayant & Roumasset, James, 2006. "Discontinuous extraction of a nonrenewable resource," Economics Letters, Elsevier, vol. 90(1), pages 6-11, January.
  9. Fabre, Adrien & Fodha, Mouez & Ricci, Francesco, 2020. "Mineral resources for renewable energy: Optimal timing of energy production," Resource and Energy Economics, Elsevier, vol. 59(C).
  10. Derek Lemoine, 2024. "Innovation-Led Transitions in Energy Supply," American Economic Journal: Macroeconomics, American Economic Association, vol. 16(1), pages 29-65, January.
  11. Prieur, Fabien & Tidball, Mabel & Withagen, Cees, 2013. "Optimal emission-extraction policy in a world of scarcity and irreversibility," Resource and Energy Economics, Elsevier, vol. 35(4), pages 637-658.
  12. Pauli Lappi & Markku Ollikainen, 2019. "Optimal Environmental Policy for a Mine Under Polluting Waste Rocks and Stock Pollution," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(1), pages 133-158, May.
  13. Amigues, Jean-Pierre & Favard, Pascal & Gaudet, Gerard & Moreaux, Michel, 1998. "On the Optimal Order of Natural Resource Use When the Capacity of the Inexhaustible Substitute Is Limited," Journal of Economic Theory, Elsevier, vol. 80(1), pages 153-170, May.
  14. Hassan Benchekroun & Gerard C. van der Meijden & Cees A. Withagen, 2017. "OPEC, Shale Oil, and Global Warming - On the Importance of the Order of Extraction," CESifo Working Paper Series 6746, CESifo.
  15. James Roumasset & Christopher Wada, 2013. "Ordering Extraction from Multiple Aquifers," Working Papers 2013-12, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
  16. Ujjayant Chakravorty & Bertrand Magne & Michel Moreaux, 2009. "Endogenous Resource Substitution under a Climate Stabilization Policy: Can Nuclear Power Provide Clean Energy?," Working Papers 2009-19, University of Alberta, Department of Economics.
  17. Frederick Van der Ploeg & Cees Withagen, 2011. "Optimal Carbon Tax with a Dirty Backstop - Oil, Coal, or Renewables?," CESifo Working Paper Series 3334, CESifo.
  18. Lappi, Pauli, 2018. "Optimal clean-up of polluted sites," Resource and Energy Economics, Elsevier, vol. 54(C), pages 53-68.
  19. Chakravorty, Ujjayant & Krulce, Darrell & Roumasset, James, 2005. "Specialization and non-renewable resources: Ricardo meets Ricardo," Journal of Economic Dynamics and Control, Elsevier, vol. 29(9), pages 1517-1545, September.
  20. Alla Fridman, 2014. "Herfindahl rule under return flows," Economics Bulletin, AccessEcon, vol. 34(3), pages 1456-1462.
  21. Ujjayant Chakravorty & Michel Moreaux & Mabel Tidball, 2008. "Ordering the Extraction of Polluting Nonrenewable Resources," American Economic Review, American Economic Association, vol. 98(3), pages 1128-1144, June.
  22. Di Maria, Corrado & Smulders, Sjak & van der Werf, Edwin, 2008. "Absolute Abundance and Relative Scarcity: Announced Policy, Resource Extraction, and Carbon Emissions," Climate Change Modelling and Policy Working Papers 46626, Fondazione Eni Enrico Mattei (FEEM).
  23. Benchekroun, Hassan & van der Meijden, Gerard & Withagen, Cees, 2020. "OPEC, unconventional oil and climate change - On the importance of the order of extraction," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).
  24. James Roumasset & Christopher Wada, 2009. "Integrated Management of the South Oahu Aquifer System: A Spatial and Temporal Approach," Working Papers 200902, University of Hawaii at Manoa, Department of Economics.
  25. Benchekroun, Hassan & Halsema, Alex & Withagen, Cees, 2010. "When additional resource stocks reduce welfare," Journal of Environmental Economics and Management, Elsevier, vol. 59(1), pages 109-114, January.
  26. Roumasset, James A. & Wada, Christopher A., 2012. "Ordering the extraction of renewable resources: The case of multiple aquifers," Resource and Energy Economics, Elsevier, vol. 34(1), pages 112-128.
  27. Gerard Gaudet & Michel Moreaux & Stephen W. Salant, 2001. "Intertemporal Depletion of Resource Sites by Spatially Distributed Users," American Economic Review, American Economic Association, vol. 91(4), pages 1149-1159, September.
  28. Lafforgue, Gilles & Magné, Bertrand & Moreaux, Michel, 2008. "Energy substitutions, climate change and carbon sinks," Ecological Economics, Elsevier, vol. 67(4), pages 589-597, November.
  29. Choiniere, Conrad J., 2000. "Renewable Energy And Greenhouse Gas Mitigation," 2000 Annual meeting, July 30-August 2, Tampa, FL 21813, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  30. Chakravorty, Ujjayant & Roumasset, James & Tse, Kinping, 1997. "Endogenous Substitution among Energy Resources and Global Warming," Journal of Political Economy, University of Chicago Press, vol. 105(6), pages 1201-1234, December.
  31. Hart, Rob & Gars, Johan, 2022. "The black paradox," European Economic Review, Elsevier, vol. 148(C).
  32. van der Ploeg, Frederick & Withagen, Cees, 2012. "Too much coal, too little oil," Journal of Public Economics, Elsevier, vol. 96(1), pages 62-77.
  33. Steinbuks, Jevgenijs & Satija, Gaurav & Zhao, Fu, 2015. "Sustainability of solar electricity : the role of endogenous resource substitution and market mediated responses," Policy Research Working Paper Series 7178, The World Bank.
  34. Gérard Gaudet & Stephen W. Salant, 2018. "Modeling Nonrenewable Resources Use with Multiple Demands and Multiple Sources," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(4), pages 737-755, August.
  35. Anna M. Birkenbach & Andreea L. Cojocaru & Frank Asche & Atle G. Guttormsen & Martin D. Smith, 2020. "Seasonal Harvest Patterns in Multispecies Fisheries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(3), pages 631-655, March.
  36. Steinbuks, Jevgenijs & Satija, Gaurav & Zhao, Fu, 2017. "Sustainability of solar electricity: The role of endogenous resource substitution and cross-sectoral responses," Resource and Energy Economics, Elsevier, vol. 49(C), pages 218-232.
  37. Holland, Stephen P., 2003. "Extraction capacity and the optimal order of extraction," Journal of Environmental Economics and Management, Elsevier, vol. 45(3), pages 569-588, May.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.