IDEAS home Printed from https://ideas.repec.org/p/zbw/kitwps/50.html
   My bibliography  Save this paper

Unanimity overruled: Majority voting and the burden of history

Author

Listed:
  • Nehring, Klaus
  • Pivato, Marcus
  • Puppe, Clemens

Abstract

Sequential majority voting over interconnected binary propositions can lead to the overruling of unanimous consensus. We characterize, within the general framework of judgement aggregation, under what circumstances this happens for some sequence of the voting process. It turns out that the class of aggregation spaces for which this difficulty arises is very large, including the aggregation of preference orderings over at least four alternatives, the aggregation of equivalence relations over at least four objects, resource allocation problems, and most committee selection problems. We also ask whether it is possible to design respect for unanimity by choosing appropriate decision sequences. Remarkably, while this is not possible in general, it can be accomplished in interesting special cases. Adapting and generalizing a classic result by Shepsle and Weingast, we show that respect for unanimity can indeed be thus guaranteed in case of the aggregation of weak orderings, strict orderings and equivalence relations.

Suggested Citation

  • Nehring, Klaus & Pivato, Marcus & Puppe, Clemens, 2013. "Unanimity overruled: Majority voting and the burden of history," Working Paper Series in Economics 50, Karlsruhe Institute of Technology (KIT), Department of Economics and Business Engineering.
  • Handle: RePEc:zbw:kitwps:50
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/88422/1/773882995.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nehring, Klaus & Pivato, Marcus & Puppe, Clemens, 2014. "The Condorcet set: Majority voting over interconnected propositions," Journal of Economic Theory, Elsevier, vol. 151(C), pages 268-303.
    2. List, Christian & Pettit, Philip, 2002. "Aggregating Sets of Judgments: An Impossibility Result," Economics and Philosophy, Cambridge University Press, vol. 18(01), pages 89-110, April.
    3. McKelvey, Richard D, 1979. "General Conditions for Global Intransitivities in Formal Voting Models," Econometrica, Econometric Society, vol. 47(5), pages 1085-1112, September.
    4. Klaus Nehring, 2005. "The (Im)Possibility of a Paretian Rational," Economics Working Papers 0068, Institute for Advanced Study, School of Social Science.
    5. Pierre Barthelemy, Jean & Monjardet, Bernard, 1981. "The median procedure in cluster analysis and social choice theory," Mathematical Social Sciences, Elsevier, vol. 1(3), pages 235-267, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nehring, Klaus & Pivato, Marcus & Puppe, Clemens, 2014. "The Condorcet set: Majority voting over interconnected propositions," Journal of Economic Theory, Elsevier, vol. 151(C), pages 268-303.
    2. Puppe, Clemens, 2016. "The single-peaked domain revisited: A simple global characterization," Working Paper Series in Economics 97, Karlsruhe Institute of Technology (KIT), Department of Economics and Business Engineering.
    3. Andreas Darmann & Julia Grundner & Christian Klamler, 2017. "Consensus in the 2015 Provincial Parliament Election in Styria, Austria: Voting Rules,Outcomes, and the Condorcet Paradox," Graz Economics Papers 2017-13, University of Graz, Department of Economics.
    4. Nehring, Klaus & Pivato, Marcus, 2018. "The median rule in judgement aggregation," MPRA Paper 84258, University Library of Munich, Germany.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:kitwps:50. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: http://edirc.repec.org/data/fwkitde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.