IDEAS home Printed from https://ideas.repec.org/p/zbw/ifwkwp/1824.html
   My bibliography  Save this paper

Including maritime transport in the EU's climate change policy: Country-based allocation and effects

Author

Listed:
  • Heitmann, Nadine

Abstract

The European Union (EU) is actively campaigning for the global regulation of carbon emissions generated by maritime bunker fuels because these emissions are presently barely regulated and are projected to increase significantly in the coming decades. However, since a global regulation has not been reached yet, the EU is seeking ways to include the shipping sector in its greenhouse gas reduction commitment for 2020. In this paper, we look at the effect of including the shipping sector's emissions in the EU reduction commitment that is based on the nationality of a ship. Emissions that are generated by ships owned, operated or flagged by the 27 EU countries are allocated to the EU total GHG emissions. We first analyse the effects on the reduction commitment caused by the three allocations. We then use marginal abatement cost curves (MACCs) in order to determine how much the shipping sector of the 27 EU countries, defined by the three allocations, could contribute efficiently to a total given emission reduction target for all sectors in the EU. Moreover, we use MACCs in order to determine if some country fleets could reduce emissions in the shipping sector relatively more efficiently than other countries under a given emission reduction target for all sectors. Our findings indicate that the shipping sector could contribute efficiently to the EU's emission reductions by up to 8.5%. Since the composition of the individual country fleets and applied measures are similar across countries, their individual reductions relative to their fleet-specific business-as-usual (BAU) emissions are on average the same.

Suggested Citation

  • Heitmann, Nadine, 2013. "Including maritime transport in the EU's climate change policy: Country-based allocation and effects," Kiel Working Papers 1824, Kiel Institute for the World Economy (IfW Kiel).
  • Handle: RePEc:zbw:ifwkwp:1824
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/68615/1/735340293.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gilbert, Paul & Bows, Alice, 2012. "Exploring the scope for complementary sub-global policy to mitigate CO2 from shipping," Energy Policy, Elsevier, vol. 50(C), pages 613-622.
    2. Anger, Annela & Köhler, Jonathan, 2010. "Including aviation emissions in the EU ETS: Much ado about nothing? A review," Transport Policy, Elsevier, vol. 17(1), pages 38-46, January.
    3. Heitmann, Nadine & Khalilian, Setareh, 2011. "Accounting for carbon dioxide emissions from international shipping: Burden sharing under different UNFCCC allocation options and regime scenarios," Marine Policy, Elsevier, vol. 35(5), pages 682-691, September.
    4. Anger, Annela, 2010. "Including aviation in the European emissions trading scheme: Impacts on the industry, CO2 emissions and macroeconomic activity in the EU," Journal of Air Transport Management, Elsevier, vol. 16(2), pages 100-105.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Qiu & Shuhua Hou & Xin Chen & Zhiyi Meng, 2021. "Green aviation industry sustainable development towards an integrated support system," Business Strategy and the Environment, Wiley Blackwell, vol. 30(5), pages 2441-2452, July.
    2. Heitmann, Nadine & Peterson, Sonja, 2012. "The potential contribution of the shipping sector to an efficient reduction of global carbon dioxide emissions," Kiel Working Papers 1813, Kiel Institute for the World Economy (IfW Kiel).
    3. Pagoni, Ioanna & Psaraki-Kalouptsidi, Voula, 2016. "The impact of carbon emission fees on passenger demand and air fares: A game theoretic approach," Journal of Air Transport Management, Elsevier, vol. 55(C), pages 41-51.
    4. Cui, Qiang & Li, Ye & Wei, Yi-Ming, 2017. "Exploring the impacts of EU ETS on the pollution abatement costs of European airlines: An application of Network Environmental Production Function," Transport Policy, Elsevier, vol. 60(C), pages 131-142.
    5. Cui, Qiang, 2019. "The online pricing strategy of low-cost carriers when carbon tax and competition are considered," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 420-432.
    6. Estelle Malavolti & Marion Podesta, 2011. "Inclusion of the aviation sector into the emission trading scheme : an economic analysis," Post-Print hal-01022239, HAL.
    7. Liu, Xiao & Hang, Ye & Wang, Qunwei & Zhou, Dequn, 2020. "Flying into the future: A scenario-based analysis of carbon emissions from China's civil aviation," Journal of Air Transport Management, Elsevier, vol. 85(C).
    8. Tiziana D'Alfonso & Changmin Jiang & Valentina Bracaglia, 2015. "Air transport and high-speed rail competition: environmental implications and mitigation strategies," DIAG Technical Reports 2015-15, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    9. Chin, Anthony T.H. & Zhang, Peng, 2013. "Carbon emission allocation methods for the aviation sector," Journal of Air Transport Management, Elsevier, vol. 28(C), pages 70-76.
    10. D’Alfonso, Tiziana & Jiang, Changmin & Bracaglia, Valentina, 2016. "Air transport and high-speed rail competition: Environmental implications and mitigation strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 261-276.
    11. Barbot, Cristina & Betancor, Ofelia & Socorro, M. Pilar & Viecens, M. Fernanda, 2014. "Trade-offs between environmental regulation and market competition: Airlines, emission trading systems and entry deterrence," Transport Policy, Elsevier, vol. 33(C), pages 65-72.
    12. Cui, Qiang & Li, Ye, 2017. "Airline efficiency measures under CNG2020 strategy: An application of a Dynamic By-production model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 130-143.
    13. Cui, Qiang & Wei, Yi-Ming & Li, Ye, 2016. "Exploring the impacts of the EU ETS emission limits on airline performance via the Dynamic Environmental DEA approach," Applied Energy, Elsevier, vol. 183(C), pages 984-994.
    14. Jiali Zheng & Han Qiao & Shouyang Wang, 2017. "The Effect of Carbon Tax in Aviation Industry on the Multilateral Simulation Game," Sustainability, MDPI, vol. 9(7), pages 1-24, July.
    15. Scheelhaase, Janina D., 2019. "How to regulate aviation's full climate impact as intended by the EU council from 2020 onwards," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 68-74.
    16. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2016. "Has airline efficiency affected by the inclusion of aviation into European Union Emission Trading Scheme? Evidences from 22 airlines during 2008–2012," Energy, Elsevier, vol. 96(C), pages 8-22.
    17. Fei Yang & Chunchen Wang, 2023. "Clean energy, emission trading policy, and CO2 emissions: Evidence from China," Energy & Environment, , vol. 34(5), pages 1657-1673, August.
    18. Armin Ibitz, 2015. "Towards a global scheme for carbon emissions reduction in aviation: China’s role in blocking the extension of the European Union’s Emissions Trading Scheme," Asia Europe Journal, Springer, vol. 13(2), pages 113-130, June.
    19. Tang, Ling & Wu, Jiaqian & Yu, Lean & Bao, Qin, 2017. "Carbon allowance auction design of China's emissions trading scheme: A multi-agent-based approach," Energy Policy, Elsevier, vol. 102(C), pages 30-40.
    20. Venmans, Frank, 2012. "A literature-based multi-criteria evaluation of the EU ETS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5493-5510.

    More about this item

    Keywords

    EU; climate change; shipping sector; CO2 emissions; marginal abatement cost curve;
    All these keywords.

    JEL classification:

    • Q52 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Pollution Control Adoption and Costs; Distributional Effects; Employment Effects
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:ifwkwp:1824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/iwkiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.