IDEAS home Printed from
   My bibliography  Save this paper

Disaggregate energy consumption and industrial output in Pakistan: An empirical analysis


  • Qazi, Ahmer Qasim
  • Ahmed, Khalid
  • Mudassar, Muhammad


The study concentrates on the relationship between disaggregate energy consumption and industrial output in Pakistan by utilizing the Johansen Method of Cointegration. The results confirm the positive effect of disaggregate energy consumption on industrial output. Furthermore, bidirectional causality is identified in the case of oil consumption, whereas unidirectional causality running from electricity consumption to industrial output is observed. Moreover, unidirectional causality has been noticed from industrial output to coal consumption although there is no causality between gas consumption and industrial output. It is obvious that conservative energy policies could be harmful to the industrial production; therefore, the government has to develop innovative energy policies in order to meet the demand for energy. Additionally, the government has to pay serious attention to alternative energy sources such as solar and wind in order to boost the clean industrial growth.

Suggested Citation

  • Qazi, Ahmer Qasim & Ahmed, Khalid & Mudassar, Muhammad, 2012. "Disaggregate energy consumption and industrial output in Pakistan: An empirical analysis," Economics Discussion Papers 2012-29, Kiel Institute for the World Economy (IfW).
  • Handle: RePEc:zbw:ifwedp:201229

    Download full text from publisher

    File URL:
    Download Restriction: no

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Yuan, Jia-Hai & Kang, Jian-Gang & Zhao, Chang-Hong & Hu, Zhao-Guang, 2008. "Energy consumption and economic growth: Evidence from China at both aggregated and disaggregated levels," Energy Economics, Elsevier, vol. 30(6), pages 3077-3094, November.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:bap:journl:170401 is not listed on IDEAS
    2. Shahbaz, Muhammad, 2015. "Measuring Economic Cost of Electricity Shortage: Current Challenges and Future Prospects in Pakistan," MPRA Paper 67164, University Library of Munich, Germany, revised 12 Oct 2015.
    3. Shahbaz, Muhammad & Abosedra, Salah & Sbia, Rashid, 2013. "Energy Consumption, Financial Development and Growth: Evidence from Cointegration with unknown Structural breaks in Lebanon," MPRA Paper 46580, University Library of Munich, Germany.
    4. Chibueze, E. Nnaji & Jude, O. Chukwu & Nnaji Moses, 2013. "Electricity Supply, Fossil fuel Consumption, Co2 Emissions and Economic Growth: Implications and Policy Options for Sustainable Development in Nigeria," International Journal of Energy Economics and Policy, Econjournals, vol. 3(3), pages 262-271.
    5. Ahmed, Khalid & Rehman, Mujeeb Ur & Ozturk, Ilhan, 2017. "What drives carbon dioxide emissions in the long-run? Evidence from selected South Asian Countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1142-1153.
    6. Ahmed, Khalid & Shahbaz, Muhammad & Kyophilavong, Phouphet, 2016. "Revisiting the emissions-energy-trade nexus: Evidence from the newly industrializing," MPRA Paper 68680, University Library of Munich, Germany, revised 05 Jan 2016.
    7. Shahbaz, Muhammad & Loganathan, Nanthakumar & Muzaffar, Ahmed Taneem & Ahmed, Khalid & Ali Jabran, Muhammad, 2016. "How urbanization affects CO2 emissions in Malaysia? The application of STIRPAT model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 83-93.
    8. Mehmood Mirza, Faisal & Bergland, Olvar & Afzal, Naila, 2014. "Electricity conservation policies and sectorial output in Pakistan: An empirical analysis," Energy Policy, Elsevier, vol. 73(C), pages 757-766.

    More about this item


    disaggregate energy consumption; industrial output; Johansen cointegration test;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:ifwedp:201229. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.