IDEAS home Printed from
   My bibliography  Save this paper

The Petersburg Paradox at 300


  • Seidl, Christian


In 1713 Nicolas Bernoulli sent to de Montmort several mathematical problems, the fifth of which was at odds with the then prevailing belief that the advantage of games of hazard follows from their expected value. In spite of the infinite expected value of this game, no gambler would venture a major stake in this game. In this year, de Montmort published this problem in his Essay d'analyse sur les jeux de hazard. By dint of this book the problem became known to the mathematics profession and elicited solution proposals by Gabriel Cramer, Daniel Bernoulli (after whom it became known as the Petersburg Paradox), and Georges de Buffon. Karl Menger was the first to discover that bounded utility is a necessary and sufficient condition to warrant a finite expected value of the Petersburg Paradox. It was, in particular, Menger's article which provided an important cue for the development of expected utility by von Neumann and Morgenstern. The present paper gives a concise account of the origin of the Petersburg Paradox and its solution proposals. In its third section, it provides a rigorous analysis of the Petersburg Paradox from the uniform methodological vantage point of d'Alembert's ratio text. Moreover, it is shown that appropriate mappings of the winnings or of the probabilities can solve or regain a Petersburg Paradox, where the use of probabilities seems to have been overlooked by the profession.

Suggested Citation

  • Seidl, Christian, 2012. "The Petersburg Paradox at 300," Economics Working Papers 2012-10, Christian-Albrechts-University of Kiel, Department of Economics.
  • Handle: RePEc:zbw:cauewp:201210

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Tibor Neugebauer, 2010. "Moral Impossibility in the Petersburg Paradox : A Literature Survey and Experimental Evidence," LSF Research Working Paper Series 10-14, Luxembourg School of Finance, University of Luxembourg.
    2. Kenneth J. Arrow, 1974. "The Use of Unbounded Utility Functions in Expected-Utility Maximization: Response," The Quarterly Journal of Economics, Oxford University Press, vol. 88(1), pages 136-138.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cauewp:201210. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.