IDEAS home Printed from
   My bibliography  Save this paper

Data Augmentation in Limited-Dependent Variable Models


  • Roberto Leon-Gonzalez


This paper proposes a scheme that speeds up the convergence of Markov Chain Monte Carlo (MCMC) algorithms in the context of limited-dependent variable models. The algorithm reduces autocorrelations more than the recently proposed Parameter Expansion Data Augumentation (PX-DA) algorithm. In addition, the paper provides an algorithm to sample a variance-covariance matrix with restrictions directly from the conditional posterior distribution. Finally, it is shown that the PX-DA algorithm, as applied to the multivariate probit model, can be seen as sampling from a different parameterization of the model. However, in some cases the PX-DA algorithm is not invariant to reparameterizations, and a slightly different algorithm is proposed.

Suggested Citation

  • Roberto Leon-Gonzalez, "undated". "Data Augmentation in Limited-Dependent Variable Models," Discussion Papers 02/09, Department of Economics, University of York.
  • Handle: RePEc:yor:yorken:02/09

    Download full text from publisher

    File URL:
    File Function: Main text
    Download Restriction: no

    References listed on IDEAS

    1. McCulloch, Robert E. & Polson, Nicholas G. & Rossi, Peter E., 2000. "A Bayesian analysis of the multinomial probit model with fully identified parameters," Journal of Econometrics, Elsevier, vol. 99(1), pages 173-193, November.
    2. Bauwens, Luc & Lubrano, Michel & Richard, Jean-Francois, 2000. "Bayesian Inference in Dynamic Econometric Models," OUP Catalogue, Oxford University Press, number 9780198773139.
    3. Amit, Yali, 1991. "On rates of convergence of stochastic relaxation for Gaussian and non-Gaussian distributions," Journal of Multivariate Analysis, Elsevier, vol. 38(1), pages 82-99, July.
    4. Nobile, Agostino, 2000. "Comment: Bayesian multinomial probit models with a normalization constraint," Journal of Econometrics, Elsevier, vol. 99(2), pages 335-345, December.
    Full references (including those not matched with items on IDEAS)

    More about this item


    data augmentation; parameter-expansion-data-augmentation; inverted wishart; multivariate probit; reparameterization.;

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:yor:yorken:02/09. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Paul Hodgson). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.