IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/82829.html
   My bibliography  Save this paper

Bayesian Inference in Spatial Sample Selection Models

Author

Listed:
  • Dogan, Osman
  • Taspinar, Suleyman

Abstract

In this study, we consider Bayesian methods for the estimation of a sample selection model with spatially correlated disturbance terms. We design a set of Markov chain Monte Carlo (MCMC) algorithms based on the method of data augmentation. The natural parameterization for the covariance structure of our model involves an unidentified parameter that complicates posterior analysis. The unidentified parameter -- the variance of the disturbance term in the selection equation -- is handled in different ways in these algorithms to achieve identification for other parameters. The Bayesian estimator based on these algorithms can account for the selection bias and the full covariance structure implied by the spatial correlation. We illustrate the implementation of these algorithms through a simulation study.

Suggested Citation

  • Dogan, Osman & Taspinar, Suleyman, 2016. "Bayesian Inference in Spatial Sample Selection Models," MPRA Paper 82829, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:82829
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/82829/1/MPRA_paper_82829.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    2. Patrick S. Ward & Raymond J. G. M. Florax & Alfonso Flores-Lagunes, 2014. "Climate change and agricultural productivity in Sub-Saharan Africa: a spatial sample selection model," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 41(2), pages 199-226.
    3. McCulloch, Robert E. & Polson, Nicholas G. & Rossi, Peter E., 2000. "A Bayesian analysis of the multinomial probit model with fully identified parameters," Journal of Econometrics, Elsevier, vol. 99(1), pages 173-193, November.
    4. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    5. Olsen, Randall J, 1980. "A Least Squares Correction for Selectivity Bias," Econometrica, Econometric Society, vol. 48(7), pages 1815-1820, November.
    6. Wang, Honglin & Iglesias, Emma M. & Wooldridge, Jeffrey M., 2013. "Partial maximum likelihood estimation of spatial probit models," Journal of Econometrics, Elsevier, vol. 172(1), pages 77-89.
    7. Whitney K. Newey, 2009. "Two-step series estimation of sample selection models," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 217-229, January.
    8. Leung, Siu Fai & Yu, Shihti, 1996. "On the choice between sample selection and two-part models," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 197-229.
    9. Imai, Kosuke & van Dyk, David A., 2005. "A Bayesian analysis of the multinomial probit model using marginal data augmentation," Journal of Econometrics, Elsevier, vol. 124(2), pages 311-334, February.
    10. Liu, Xiaodong & Lee, Lung-fei, 2010. "GMM estimation of social interaction models with centrality," Journal of Econometrics, Elsevier, vol. 159(1), pages 99-115, November.
    11. Heckman, James J, 1990. "Varieties of Selection Bias," American Economic Review, American Economic Association, vol. 80(2), pages 313-318, May.
    12. Lee, Lung-fei, 1994. "Semiparametric two-stage estimation of sample selection models subject to Tobit-type selection rules," Journal of Econometrics, Elsevier, vol. 61(2), pages 305-344, April.
    13. Lee, Lung-Fei, 1978. "Unionism and Wage Rates: A Simultaneous Equations Model with Qualitative and Limited Dependent Variables," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 19(2), pages 415-433, June.
    14. Koop,Gary & Poirier,Dale J. & Tobias,Justin L., 2007. "Bayesian Econometric Methods," Cambridge Books, Cambridge University Press, number 9780521671736, June.
    15. Martijn van Hasselt, 2005. "Bayesian Sampling Algorithms for the Sample Selection and Two-Part Models," Computing in Economics and Finance 2005 241, Society for Computational Economics.
    16. Myoung‐Jae Lee, 2003. "Exclusion Bias in Sample‐Selection Model Estimators," The Japanese Economic Review, Japanese Economic Association, vol. 54(2), pages 229-236, June.
    17. Ding, Peng, 2014. "Bayesian robust inference of sample selection using selection-t models," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 451-464.
    18. Pinkse, Joris & Slade, Margaret E., 1998. "Contracting in space: An application of spatial statistics to discrete-choice models," Journal of Econometrics, Elsevier, vol. 85(1), pages 125-154, July.
    19. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 31(3), pages 129-137.
    20. Rabovic, Renata & Cizek, Pavel, 2016. "Estimation of Spatial Sample Selection Models : A Partial Maximum Likelihood Approach," Discussion Paper 2016-013, Tilburg University, Center for Economic Research.
    21. repec:cup:cbooks:9781108423380 is not listed on IDEAS
    22. Nobile, Agostino, 2000. "Comment: Bayesian multinomial probit models with a normalization constraint," Journal of Econometrics, Elsevier, vol. 99(2), pages 335-345, December.
    23. Buchel, Felix & van Ham, Maarten, 2003. "Overeducation, regional labor markets, and spatial flexibility," Journal of Urban Economics, Elsevier, vol. 53(3), pages 482-493, May.
    24. Doğan, Osman & Taşpınar, Süleyman, 2014. "Spatial autoregressive models with unknown heteroskedasticity: A comparison of Bayesian and robust GMM approach," Regional Science and Urban Economics, Elsevier, vol. 45(C), pages 1-21.
    25. repec:cup:cbooks:9781108437493 is not listed on IDEAS
    26. Lane F. Burgette & Erik V. Nordheim, 2012. "The Trace Restriction: An Alternative Identification Strategy for the Bayesian Multinomial Probit Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 404-410, February.
    27. van Hasselt, Martijn, 2011. "Bayesian inference in a sample selection model," Journal of Econometrics, Elsevier, vol. 165(2), pages 221-232.
    28. Kai, Li, 1998. "Bayesian inference in a simultaneous equation model with limited dependent variables," Journal of Econometrics, Elsevier, vol. 85(2), pages 387-400, August.
    29. Lung-fei Lee & Xiaodong Liu & Xu Lin, 2010. "Specification and estimation of social interaction models with network structures," Econometrics Journal, Royal Economic Society, vol. 13(2), pages 145-176, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Spatial dependence; Spatial sample selection model; Bayesian analysis; Data augmentation;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:82829. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.