IDEAS home Printed from https://ideas.repec.org/p/yor/hectdg/23-12.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

The Value of Patients: Heterogenous Physician Learning and Generic Drug Diffusion

Author

Listed:
  • Zhu, Z.;

Abstract

This paper explores how the difference in the quantity and quality of information received by physicians shapes the learning process and subsequently the diffusion of generic drugs. By exploiting prescription level data, I find that both the volume of information and the difference in the composition of information signals received by a physician contributes to the heterogeneity in adoption rates. In particular, having more information signals from new patients who move from peers increases the adoption rate of generic drugs. To explain the findings, I develop a physician learning framework where the informativeness of signals differ across old patients and new patients from other doctors. The calibrated results suggest that new patient signals weigh more than own patient signals in directly raising physicians’ expectations on the true quality, whilst this effect does not act through reducing uncertainty around the expectation. The results on the compositional effect of information echoes with "the strength of weak ties" where new patients from peers, seen as weak ties, are more informative in raising physicians’ optimism of new drugs.

Suggested Citation

  • Zhu, Z.;, 2023. "The Value of Patients: Heterogenous Physician Learning and Generic Drug Diffusion," Health, Econometrics and Data Group (HEDG) Working Papers 23/12, HEDG, c/o Department of Economics, University of York.
  • Handle: RePEc:yor:hectdg:23/12
    as

    Download full text from publisher

    File URL: https://www.york.ac.uk/media/economics/documents/hedg/workingpapers/2023/2312.pdf
    File Function: Main text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Foster, Andrew D & Rosenzweig, Mark R, 1995. "Learning by Doing and Learning from Others: Human Capital and Technical Change in Agriculture," Journal of Political Economy, University of Chicago Press, vol. 103(6), pages 1176-1209, December.
    2. Oriana Bandiera & Imran Rasul, 2006. "Social Networks and Technology Adoption in Northern Mozambique," Economic Journal, Royal Economic Society, vol. 116(514), pages 869-902, October.
    3. Andrew J. Epstein & Jonathan D. Ketcham, 2014. "Information technology and agency in physicians' prescribing decisions," RAND Journal of Economics, RAND Corporation, vol. 45(2), pages 422-448, June.
    4. Ching, Andrew T., 2010. "Consumer learning and heterogeneity: Dynamics of demand for prescription drugs after patent expiration," International Journal of Industrial Organization, Elsevier, vol. 28(6), pages 619-638, November.
    5. Andrew Ching & Masakazu Ishihara, 2010. "The effects of detailing on prescribing decisions under quality uncertainty," Quantitative Marketing and Economics (QME), Springer, vol. 8(2), pages 123-165, June.
    6. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2013. "Invited Paper ---Learning Models: An Assessment of Progress, Challenges, and New Developments," Marketing Science, INFORMS, vol. 32(6), pages 913-938, November.
    7. Gregory S. Crawford & Matthew Shum, 2005. "Uncertainty and Learning in Pharmaceutical Demand," Econometrica, Econometric Society, vol. 73(4), pages 1137-1173, July.
    8. Peter M. DeMarzo & Dimitri Vayanos & Jeffrey Zwiebel, 2003. "Persuasion Bias, Social Influence, and Unidimensional Opinions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(3), pages 909-968.
    9. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2013. "Learning Models: An Assessment of Progress, Challenges and New Developments," Economics Papers 2013-W07, Economics Group, Nuffield College, University of Oxford.
    10. Timothy G. Conley & Christopher R. Udry, 2010. "Learning about a New Technology: Pineapple in Ghana," American Economic Review, American Economic Association, vol. 100(1), pages 35-69, March.
    11. Coscelli, Andrea & Shum, Matthew, 2004. "An empirical model of learning and patient spillovers in new drug entry," Journal of Econometrics, Elsevier, vol. 122(2), pages 213-246, October.
    12. Glenn Ellison & Drew Fudenberg, 1995. "Word-of-Mouth Communication and Social Learning," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(1), pages 93-125.
    13. Sridhar Narayanan & Puneet Manchanda, 2009. "Heterogeneous Learning and the Targeting of Marketing Communication for New Products," Marketing Science, INFORMS, vol. 28(3), pages 424-441, 05-06.
    14. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    15. Ellison, Glenn & Fudenberg, Drew, 1993. "Rules of Thumb for Social Learning," Journal of Political Economy, University of Chicago Press, vol. 101(4), pages 612-643, August.
    16. Kenneth J. Arrow & L. Kamran Bilir & Alan Sorensen, 2020. "The Impact of Information Technology on the Diffusion of New Pharmaceuticals," American Economic Journal: Applied Economics, American Economic Association, vol. 12(3), pages 1-39, July.
    17. Natalie Mizik & Robert Jacobson, 2004. "Are Physicians ÜEasy MarksÝ? Quantifying the Effects of Detailing and Sampling on New Prescriptions," Management Science, INFORMS, vol. 50(12), pages 1704-1715, December.
    18. H. Peyton Young, 2009. "Innovation Diffusion in Heterogeneous Populations: Contagion, Social Influence, and Social Learning," American Economic Review, American Economic Association, vol. 99(5), pages 1899-1924, December.
    19. Abhijit V. Banerjee, 1992. "A Simple Model of Herd Behavior," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(3), pages 797-817.
    20. Andrew T. Ching & Masakazu Ishihara, 2012. "Measuring the Informative and Persuasive Roles of Detailing on Prescribing Decisions," Management Science, INFORMS, vol. 58(7), pages 1374-1387, July.
    21. Tülin Erdem & Michael P. Keane & Baohong Sun, 2008. "A Dynamic Model of Brand Choice When Price and Advertising Signal Product Quality," Marketing Science, INFORMS, vol. 27(6), pages 1111-1125, 11-12.
    22. Tülin Erdem & Michael P. Keane, 1996. "Decision-Making Under Uncertainty: Capturing Dynamic Brand Choice Processes in Turbulent Consumer Goods Markets," Marketing Science, INFORMS, vol. 15(1), pages 1-20.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2013. "Learning Models: An Assessment of Progress, Challenges and New Developments," Economics Papers 2013-W07, Economics Group, Nuffield College, University of Oxford.
    2. Xu, Yan, 2017. "Essays on preference formation and home production," Other publications TiSEM b028fd7e-53ba-4ff6-97eb-4, Tilburg University, School of Economics and Management.
    3. Jie Bai, 2016. "Melons as Lemons: Asymmetric Information, Consumer Learning and Seller Reputation," Natural Field Experiments 00540, The Field Experiments Website.
    4. Kohei Kawaguchi, 2021. "When Will Workers Follow an Algorithm? A Field Experiment with a Retail Business," Management Science, INFORMS, vol. 67(3), pages 1670-1695, March.
    5. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2013. "Invited Paper ---Learning Models: An Assessment of Progress, Challenges, and New Developments," Marketing Science, INFORMS, vol. 32(6), pages 913-938, November.
    6. Song Lin & Juanjuan Zhang & John R. Hauser, 2015. "Learning from Experience, Simply," Marketing Science, INFORMS, vol. 34(1), pages 1-19, January.
    7. Jürgen Maurer & Katherine M. Harris, 2016. "Learning to Trust Flu Shots: Quasi‐Experimental Evidence from the 2009 Swine Flu Pandemic," Health Economics, John Wiley & Sons, Ltd., vol. 25(9), pages 1148-1162, September.
    8. Mira Frick & Yuhta Ishii, 2015. "Innovation Adoption by Forward-Looking Social Learners," Cowles Foundation Discussion Papers 1877, Cowles Foundation for Research in Economics, Yale University.
    9. S. Sriram & Pradeep K. Chintagunta & Puneet Manchanda, 2015. "Service Quality Variability and Termination Behavior," Management Science, INFORMS, vol. 61(11), pages 2739-2759, November.
    10. Maurer, J. & Harris, K.M., 2015. "Learning to trust flu shots: quasi-experimental evidence on the role of learning in influenza vaccination decisions from the 2009 influenza A/H1N1 (swine flu) pandemic," Health, Econometrics and Data Group (HEDG) Working Papers 15/19, HEDG, c/o Department of Economics, University of York.
    11. Ching, Andrew T. & Erdem, Tülin & Keane, Michael P., 2014. "A simple method to estimate the roles of learning, inventories and category consideration in consumer choice," Journal of choice modelling, Elsevier, vol. 13(C), pages 60-72.
    12. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2020. "How much do consumers know about the quality of products? Evidence from the diaper market," The Japanese Economic Review, Springer, vol. 71(4), pages 541-569, October.
    13. Guofang Huang & Hong Luo & Jing Xia, 2019. "Invest in Information or Wing It? A Model of Dynamic Pricing with Seller Learning," Management Science, INFORMS, vol. 65(12), pages 5556-5583, December.
    14. Andrew T. Ching & Hyunwoo Lim, 2020. "A Structural Model of Correlated Learning and Late-Mover Advantages: The Case of Statins," Management Science, INFORMS, vol. 66(3), pages 1095-1123, March.
    15. Hai Che & Tülin Erdem & T. Sabri Öncü, 2015. "Consumer learning and evolution of consumer brand preferences," Quantitative Marketing and Economics (QME), Springer, vol. 13(3), pages 173-202, September.
    16. Carey, Colleen & Lieber, Ethan M.J. & Miller, Sarah, 2021. "Drug firms’ payments and physicians’ prescribing behavior in Medicare Part D," Journal of Public Economics, Elsevier, vol. 197(C).
    17. van Ewijk, Bernadette J. & Gijsbrechts, Els & Steenkamp, Jan-Benedict E.M., 2022. "The dark side of innovation: How new SKUs affect brand choice in the presence of consumer uncertainty and learning," International Journal of Research in Marketing, Elsevier, vol. 39(4), pages 967-987.
    18. Tat Chan & Chakravarthi Narasimhan & Ying Xie, 2013. "Treatment Effectiveness and Side Effects: A Model of Physician Learning," Management Science, INFORMS, vol. 59(6), pages 1309-1325, June.
    19. Shervin Shahrokhi Tehrani & Andrew T. Ching, 2024. "A Heuristic Approach to Explore: The Value of Perfect Information," Management Science, INFORMS, vol. 70(5), pages 3200-3224, May.
    20. H. Peyton Young, 2009. "Innovation Diffusion in Heterogeneous Populations: Contagion, Social Influence, and Social Learning," American Economic Review, American Economic Association, vol. 99(5), pages 1899-1924, December.

    More about this item

    Keywords

    learning; information; diffusion processes; network;
    All these keywords.

    JEL classification:

    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:yor:hectdg:23/12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jane Rawlings (email available below). General contact details of provider: https://edirc.repec.org/data/deyoruk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.