Financial crisis influence on the BUX index of Hungarian stock exchange. Long memory measures: 1991-2008
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Lo, Andrew W, 1991.
"Long-Term Memory in Stock Market Prices,"
Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
- Andrew W. Lo, 1989. "Long-term Memory in Stock Market Prices," NBER Working Papers 2984, National Bureau of Economic Research, Inc.
- Lo, Andrew W. (Andrew Wen-Chuan), 1989. "Long-term memory in stock market prices," Working papers 3014-89., Massachusetts Institute of Technology (MIT), Sloan School of Management.
- Tom Doan, "undated". "RSSTATISTIC: RATS procedure to compute R/S Statistic (classical or Lo's modified)," Statistical Software Components RTS00191, Boston College Department of Economics.
- Clifford M. Hurvich & Bonnie K. Ray, 2003. "The Local Whittle Estimator of Long-Memory Stochastic Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 1(3), pages 445-470.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
- Demiralay, Sercan & Ulusoy, Veysel, 2014. "Value-at-risk Predictions of Precious Metals with Long Memory Volatility Models," MPRA Paper 53229, University Library of Munich, Germany.
- Ata Assaf & Luis Alberiko Gil-Alana & Khaled Mokni, 2022. "True or spurious long memory in the cryptocurrency markets: evidence from a multivariate test and other Whittle estimation methods," Empirical Economics, Springer, vol. 63(3), pages 1543-1570, September.
- Cornelis A. Los, 2004. "Nonparametric Efficiency Testing of Asian Stock Markets Using Weekly Data," Finance 0409033, University Library of Munich, Germany.
- Zeinali, Narges & Pourdarvish, Ahmad, 2022. "An entropy-based estimator of the Hurst exponent in fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
- Erhard Reschenhofer & Manveer K. Mangat, 2021. "Fast computation and practical use of amplitudes at non-Fourier frequencies," Computational Statistics, Springer, vol. 36(3), pages 1755-1773, September.
- Krämer, Walter & Sibbertsen, Philipp & Kleiber, Christian, 2001. "Long memory vs. structural change in financial time series," Technical Reports 2001,37, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).
- Barkoulas, John T. & Baum, Christopher F., 1996.
"Long-term dependence in stock returns,"
Economics Letters, Elsevier, vol. 53(3), pages 253-259, December.
- Christopher F. Baum & John Barkoulas, 1996. "Long Term Dependence in Stock Returns," Boston College Working Papers in Economics 314., Boston College Department of Economics.
- Gil-Alana, L.A., 2006.
"Fractional integration in daily stock market indexes,"
Review of Financial Economics, Elsevier, vol. 15(1), pages 28-48.
- L.A. Gil‐Alana, 2006. "Fractional integration in daily stock market indexes," Review of Financial Economics, John Wiley & Sons, vol. 15(1), pages 28-48.
- Lahiani, A. & Scaillet, O., 2009.
"Testing for threshold effect in ARFIMA models: Application to US unemployment rate data,"
International Journal of Forecasting, Elsevier, vol. 25(2), pages 418-428.
- Amine LAHIANI & Olivier SCAILLET, 2008. "Testing for threshold effect in ARFIMA models: Application to US unemployment rate data," Swiss Finance Institute Research Paper Series 08-42, Swiss Finance Institute.
- Ballestra, Luca Vincenzo & Pacelli, Graziella & Radi, Davide, 2016. "A very efficient approach for pricing barrier options on an underlying described by the mixed fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 240-248.
- Prat, Georges, 2013.
"Equity risk premium and time horizon: What do the U.S. secular data say?,"
Economic Modelling, Elsevier, vol. 34(C), pages 76-88.
- Georges Prat, 2010. "Equity Risk Premium and Time Horizon : What do the U.S. Secular Data Say ?," EconomiX Working Papers 2010-22, University of Paris Nanterre, EconomiX.
- Georges Prat, 2012. "Equity risk premium and time horizon: what do the U.S. secular data say?," Working Papers 12-06, Association Française de Cliométrie (AFC).
- Mensi, Walid & Hammoudeh, Shawkat & Yoon, Seong-Min, 2014. "Structural breaks and long memory in modeling and forecasting volatility of foreign exchange markets of oil exporters: The importance of scheduled and unscheduled news announcements," International Review of Economics & Finance, Elsevier, vol. 30(C), pages 101-119.
- Shi, Yanlin & Ho, Kin-Yip, 2015. "Long memory and regime switching: A simulation study on the Markov regime-switching ARFIMA model," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 189-204.
- B M, Lithin & chakraborty, Suman & iyer, Vishwanathan & M N, Nikhil & ledwani, Sanket, 2022. "Modeling asymmetric sovereign bond yield volatility with univariate GARCH models: Evidence from India," MPRA Paper 117067, University Library of Munich, Germany, revised 05 Jan 2023.
- Alvarez-Ramirez, Jose & Alvarez, Jesus & Rodriguez, Eduardo, 2008. "Short-term predictability of crude oil markets: A detrended fluctuation analysis approach," Energy Economics, Elsevier, vol. 30(5), pages 2645-2656, September.
- Surgailis, Donatas & Teyssière, Gilles & Vaiciulis, Marijus, 2008. "The increment ratio statistic," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 510-541, March.
- John Barkoulas & Christopher Baum & Nickolaos Travlos, 2000.
"Long memory in the Greek stock market,"
Applied Financial Economics, Taylor & Francis Journals, vol. 10(2), pages 177-184.
- John T. Barkoulas & Christopher F. Baum & Nickolaos Travlos, 1996. "Long Memory in the Greek Stock Market," Boston College Working Papers in Economics 356., Boston College Department of Economics.
- Mulligan, Robert F., 2004. "Fractal analysis of highly volatile markets: an application to technology equities," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(1), pages 155-179, February.
More about this item
Keywords
; ; ; ; ; ; ; ; ;JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- G19 - Financial Economics - - General Financial Markets - - - Other
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wse:wpaper:46. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marcin Owczarczuk The email address of this maintainer does not seem to be valid anymore. Please ask Marcin Owczarczuk to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/dxwawpl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/wse/wpaper/46.html