IDEAS home Printed from
   My bibliography  Save this paper

A piecewise linear model for trade sign inference


  • Adam Blazejewski

    (University of Sydney, Syndey, Australia)

  • Richard Coggins

    (University of Sydney, Sydney, Australia)


We use transaction level data for twelve stocks with large market capitalization on the Australian Stock Exchange to develop an empirical model for trade sign (trade initiator) inference. The new model is a piecewise linear parameterization of the model proposed recently in Ref. [1]. The space of the predictor variables is partitioned into six regions. Signs of individual trades within the regions are inferred according to simple and interpretable rules. Across the 12 stocks the new model achieves an average out-of-sample classification accuracy of 74.38% (SD=4.25%), which is 2.98% above the corresponding accuracy reported in Ref. [1]. Two of the model's regions, together accounting for 16.79% of the total number of daily trades, have each an average classification accuracy exceeding 91.50%. The results indicate a strong dependence between the predictor variables and the trade sign, and provide evidence for an endogenous component in the order flow. An interpretation of the trade sign classification accuracy within the model's regions offers new insights into a relationship between two regularities observed in the markets with a limit order book, competition for order execution and transaction cost minimization.

Suggested Citation

  • Adam Blazejewski & Richard Coggins, 2004. "A piecewise linear model for trade sign inference," Finance 0412012, EconWPA.
  • Handle: RePEc:wpa:wuwpfi:0412012
    Note: Type of Document - pdf; pages: 17

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Griffiths, Mark D. & Smith, Brian F. & Turnbull, D. Alasdair S. & White, Robert W., 2000. "The costs and determinants of order aggressiveness," Journal of Financial Economics, Elsevier, vol. 56(1), pages 65-88, April.
    2. Jean-Philippe Bouchaud & Yuval Gefen & Marc Potters & Matthieu Wyart, 2003. "Fluctuations and response in financial markets: the subtle nature of `random' price changes," Papers cond-mat/0307332,, revised Aug 2003.
    3. Michael Aitken & Amaryllis Kua & Philip Brown & Terry Watter & H. Y. Izan, 1995. "An Intraday Analysis of the Probability of Trading on the ASX at the Asking Price," Australian Journal of Management, Australian School of Business, vol. 20(2), pages 115-154, December.
    4. Jean-Philippe Bouchaud & Yuval Gefen & Marc Potters & Matthieu Wyart, 2004. "Fluctuations and response in financial markets: the subtle nature of 'random' price changes," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 176-190.
    5. Biais, Bruno & Hillion, Pierre & Spatt, Chester, 1995. " An Empirical Analysis of the Limit Order Book and the Order Flow in the Paris Bourse," Journal of Finance, American Finance Association, vol. 50(5), pages 1655-1689, December.
    6. J. Doyne Farmer & Laszlo Gillemot & Fabrizio Lillo & Szabolcs Mike & Anindya Sen, 2004. "What really causes large price changes?," Quantitative Finance, Taylor & Francis Journals, vol. 4(4), pages 383-397.
    7. Hedvall, Kaj & Niemeyer, Jonas & Rosenqvist, Gunnar, 1997. "Do buyers and sellers behave similarly in a limit order book? A high-frequency data examination of the Finnish stock exchange," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 279-293, June.
    8. Hamao, Yasushi & Hasbrouck, Joel, 1995. "Securities Trading in the Absence of Dealers: Trades and Quotes on the Tokyo Stock Exchange," Review of Financial Studies, Society for Financial Studies, vol. 8(3), pages 849-878.
    9. Lillo Fabrizio & Farmer J. Doyne, 2004. "The Long Memory of the Efficient Market," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(3), pages 1-35, September.
    10. Lee, Charles M C & Ready, Mark J, 1991. " Inferring Trade Direction from Intraday Data," Journal of Finance, American Finance Association, vol. 46(2), pages 733-746, June.
    11. Hans Degryse & Frank De Jong & Maarten Van Ravenswaaij & Gunther Wuyts, 2005. "Aggressive Orders and the Resiliency of a Limit Order Market," Review of Finance, European Finance Association, vol. 9(2), pages 201-242.
    12. Adam Blazejewski & Richard Coggins, 2004. "A local non-parametric model for trade sign inference," Finance 0408009, EconWPA.
    13. Ellis, Katrina & Michaely, Roni & O'Hara, Maureen, 2000. "The Accuracy of Trade Classification Rules: Evidence from Nasdaq," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 35(04), pages 529-551, December.
    14. Ranaldo, Angelo, 2004. "Order aggressiveness in limit order book markets," Journal of Financial Markets, Elsevier, vol. 7(1), pages 53-74, January.
    15. Verhoeven, Peter & Ching, Simon & Guan Ng, Hock, 2004. "Determinants of the decision to submit market or limit orders on the ASX," Pacific-Basin Finance Journal, Elsevier, vol. 12(1), pages 1-18, January.
    16. Potters, Marc & Bouchaud, Jean-Philippe, 2003. "More statistical properties of order books and price impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 133-140.
    17. Aitken, Michael J. & Berkman, Henk & Mak, Derek, 2001. "The use of undisclosed limit orders on the Australian Stock Exchange," Journal of Banking & Finance, Elsevier, vol. 25(8), pages 1589-1603, August.
    18. Marc Potters & Jean-Philippe Bouchaud, 2002. "More statistical properties of order books and price impact," Science & Finance (CFM) working paper archive 0210710, Science & Finance, Capital Fund Management.
    19. Aitken, Michael & Frino, Alex, 1996. "The accuracy of the tick test: Evidence from the Australian stock exchange," Journal of Banking & Finance, Elsevier, vol. 20(10), pages 1715-1729, December.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Order submission; Trade classification; Piecewise linear; Competition for order execution; Transaction cost minimization;

    JEL classification:

    • G - Financial Economics

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:0412012. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.