IDEAS home Printed from https://ideas.repec.org/p/vor/issues/2014-09-16.html
   My bibliography  Save this paper

Analyzing Performance Of Garch Models In Nse

Author

Listed:
  • Prashant Joshi

Abstract

The study uses three different models: GARCH(1,1), EGARCH(1,1) and GJR-GARCH(1,1) to analyze volatility of Nifty of National Stock Exchange (NSE) of India from January 1, 2010 to July 4, 2014. The results reveal persistence of volatility andthe presence of leverage effect implying impact of good and bad news is not same. To evaluate the models, various model selection and forecasting performance criterion like AIC, SBC, RMSE, MAE, MAPE and TIC criterionare employed. Our results indicate that GARCH (1,1) has better forecasting ability in NSE. JEL Classification: G14, C32 Key words: Volatility clustering, GARCH, EGARCH, TGARCH, RMSE, MAE, MAPE, TIC

Suggested Citation

  • Prashant Joshi, 2014. "Analyzing Performance Of Garch Models In Nse," Working papers 2014-09-16, Voice of Research.
  • Handle: RePEc:vor:issues:2014-09-16
    as

    Download full text from publisher

    File URL: http://www.voiceofresearch.org/doc/Sep-2014/Sep-2014_16.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schwert, G William, 1990. "Stock Volatility and the Crash of '87," The Review of Financial Studies, Society for Financial Studies, vol. 3(1), pages 77-102.
    2. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    3. T. Ane, 2006. "Short and long term components of volatility in Hong Kong stock returns," Post-Print hal-00170780, HAL.
    4. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    5. Richard T. Baillie & Tim Bollerslev, 1991. "Intra-Day and Inter-Market Volatility in Foreign Exchange Rates," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(3), pages 565-585.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. Pandey, Ajay, 2003. "Modeling and Forecasting Volatility in Indian Capital Markets," IIMA Working Papers WP2003-08-03, Indian Institute of Management Ahmedabad, Research and Publication Department.
    8. Tse, Y. K., 1991. "Stock returns volatility in the Tokyo stock exchange," Japan and the World Economy, Elsevier, vol. 3(3), pages 285-298, November.
    9. Mr. Stephan Danninger & Ms. Irina Tytell & Mr. Ravi Balakrishnan & Mr. Selim A Elekdag, 2009. "The Transmission of Financial Stress from Advanced to Emerging Economies," IMF Working Papers 2009/133, International Monetary Fund.
    10. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    11. Taylor, Stephen J., 1987. "Forecasting the volatility of currency exchange rates," International Journal of Forecasting, Elsevier, vol. 3(1), pages 159-170.
    12. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    13. Akgiray, Vedat, 1989. "Conditional Heteroscedasticity in Time Series of Stock Returns: Evidence and Forecasts," The Journal of Business, University of Chicago Press, vol. 62(1), pages 55-80, January.
    14. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    15. Thierry Ane, 2006. "Short and long term components of volatility in Hong Kong stock returns," Applied Financial Economics, Taylor & Francis Journals, vol. 16(6), pages 439-460.
    16. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    17. Sunil Poshakwale & Victor Murinde, 2001. "Modelling the volatility in East European emerging stock markets: evidence on Hungary and Poland," Applied Financial Economics, Taylor & Francis Journals, vol. 11(4), pages 445-456.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415.
    2. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Lucy Ackert & Marie Racine, 1997. "The economics of conditional heteroskedasticity: Evidence from canadian and U.S. stock and futures markets," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 25(4), pages 371-385, December.
    4. Tim Bollerslev & Ray Y. Chou & Narayanan Jayaraman & Kenneth F. Kroner - L, 1991. "es modéles ARCH en finance : un point sur la théorie et les résultats empiriques," Annals of Economics and Statistics, GENES, issue 24, pages 1-59.
    5. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    6. repec:adr:anecst:y:1991:i:24:p:01 is not listed on IDEAS
    7. Matei, Marius, 2010. "Risk analysis in the evaluation of the international investment opportunities. Advances in modelling and forecasting volatility for risk assessment purposes," Working Papers of Institute for Economic Forecasting 100201, Institute for Economic Forecasting.
    8. Ercan Balaban & Asli Bayar & Robert Faff, 2006. "Forecasting stock market volatility: Further international evidence," The European Journal of Finance, Taylor & Francis Journals, vol. 12(2), pages 171-188.
    9. Committee, Nobel Prize, 2003. "Time-series Econometrics: Cointegration and Autoregressive Conditional Heteroskedasticity," Nobel Prize in Economics documents 2003-1, Nobel Prize Committee.
    10. Kian Teng Kwek & Kuan Nee Koay, 2006. "Exchange rate volatility and volatility asymmetries: an application to finding a natural dollar currency," Applied Economics, Taylor & Francis Journals, vol. 38(3), pages 307-323.
    11. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    12. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-059, New York University, Leonard N. Stern School of Business-.
    13. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    14. Angelovska, Julijana & Ivanovski, Zoran, 2018. "Accuracy In Risk Estimation Based On Simple Sma And Ewma Models:Evidence From Macedonian Stock Market," UTMS Journal of Economics, University of Tourism and Management, Skopje, Macedonia, vol. 9(1), pages 17-27.
    15. Eleni Constantinou & Robert Georgiades & Avo Kazandjian & George Kouretas, 2005. "Mean and variance causality between the Cyprus Stock Exchange and major equity markets," Working Papers 0501, University of Crete, Department of Economics.
    16. Bauer, Rob M M J & Nieuwland, Frederick G M C & Verschoor, Willem F C, 1994. "German Stock Market Dynamics," Empirical Economics, Springer, vol. 19(3), pages 397-418.
    17. Torben G. Andersen & Tim Bollerslev, 1997. "Answering the Critics: Yes, ARCH Models Do Provide Good Volatility Forecasts," NBER Working Papers 6023, National Bureau of Economic Research, Inc.
    18. Novkovska, Blagica & Serafimovic, Gordana, 2018. "Recognizing The Vulnerability Of Generation Z To Economic And Social Risks," UTMS Journal of Economics, University of Tourism and Management, Skopje, Macedonia, vol. 9(1), pages 29-37.
    19. Mehmet Sahiner, 2022. "Forecasting volatility in Asian financial markets: evidence from recursive and rolling window methods," SN Business & Economics, Springer, vol. 2(10), pages 1-74, October.
    20. Diongue, Abdou Kâ & Guégan, Dominique, 2007. "The stationary seasonal hyperbolic asymmetric power ARCH model," Statistics & Probability Letters, Elsevier, vol. 77(11), pages 1158-1164, June.
    21. Eskandar A. Tooma, 2003. "Modeling and Forecasting Egyptian Stock Market Volatility Before and After Price Limits," Working Papers 0310, Economic Research Forum, revised Apr 2003.

    More about this item

    Keywords

    volatility clustering; garch; egarch; tgarch; rmse; mae; mape; tic;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vor:issues:2014-09-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Avdhesh Jha (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.