IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

A Recursive Thick Frontier Approach To Estimating Production Efficiency

We introduce a new panel data estimation technique for cost and production functions: the Recursive Thick Frontier Approach (RTFA). RTFA has two advantages over existing thick frontier methods. First, technical inefficiency is allowed to be dependent on the explanatory variables of the frontier model. Secondly, no distributional assumptions are imposed on the inefficiency component of the error term. We show by means of simulation experiments that RTFA can outperform the popular stochastic frontier approach (SFA) and the “within” OLS estimator for realistic parameterisations of the productivity model.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.uvic.ca/socialsciences/economics/assets/docs/econometrics/ewp0503.pdf
Download Restriction: no

Paper provided by Department of Economics, University of Victoria in its series Econometrics Working Papers with number 0503.

as
in new window

Length: 26 pages
Date of creation: 11 Mar 2005
Date of revision:
Handle: RePEc:vic:vicewp:0503
Note: ISSN 1485-6441
Contact details of provider: Postal: PO Box 1700, STN CSC, Victoria, BC, Canada, V8W 2Y2
Phone: (250)721-6197
Fax: (250)721-6214
Web page: http://web.uvic.ca/econ

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
  2. Allen N. Berger & David B. Humphrey, 1992. "Measurement and Efficiency Issues in Commercial Banking," NBER Chapters, in: Output Measurement in the Service Sectors, pages 245-300 National Bureau of Economic Research, Inc.
  3. Schmidt, Peter & Sickles, Robin C, 1984. "Production Frontiers and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 367-74, October.
  4. Hinloopen, Jeroen & Wagenvoort, Rien, 1997. "On the computation and efficiency of a HBP-GM estimator some simulation results," Computational Statistics & Data Analysis, Elsevier, vol. 25(1), pages 1-15, July.
  5. Kalirajan, K P & Shand, R T, 1999. " Frontier Production Functions and Technical Efficiency Measures," Journal of Economic Surveys, Wiley Blackwell, vol. 13(2), pages 149-72, April.
  6. Battese, George E. & Coelli, Tim J., 1988. "Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data," Journal of Econometrics, Elsevier, vol. 38(3), pages 387-399, July.
  7. Kalirajan, K P & Obwona, M B, 1994. "Frontier Production Function: The Stochastic Coefficients Approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 56(1), pages 87-96, February.
  8. Cazals, Catherine & Florens, Jean-Pierre & Simar, Leopold, 2002. "Nonparametric frontier estimation: a robust approach," Journal of Econometrics, Elsevier, vol. 106(1), pages 1-25, January.
  9. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-44, June.
  10. Kumbhakar, Subal C., 1990. "Production frontiers, panel data, and time-varying technical inefficiency," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 201-211.
  11. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
  12. Léopold Simar, 2003. "Detecting Outliers in Frontier Models: A Simple Approach," Journal of Productivity Analysis, Springer, vol. 20(3), pages 391-424, November.
  13. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
  14. Schmidt, Peter, 1976. "On the Statistical Estimation of Parametric Frontier Production Functions," The Review of Economics and Statistics, MIT Press, vol. 58(2), pages 238-39, May.
  15. Greene, William H., 1990. "A Gamma-distributed stochastic frontier model," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 141-163.
  16. Greene, William H., 1980. "Maximum likelihood estimation of econometric frontier functions," Journal of Econometrics, Elsevier, vol. 13(1), pages 27-56, May.
  17. Kopp, Raymond J. & Mullahy, John, 1990. "Moment-based estimation and testing of stochastic frontier models," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 165-183.
  18. van den Broeck, Julien & Koop, Gary & Osiewalski, Jacek & Steel, Mark F. J., 1994. "Stochastic frontier models : A Bayesian perspective," Journal of Econometrics, Elsevier, vol. 61(2), pages 273-303, April.
  19. Stevenson, Rodney E., 1980. "Likelihood functions for generalized stochastic frontier estimation," Journal of Econometrics, Elsevier, vol. 13(1), pages 57-66, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:vic:vicewp:0503. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (David Giles)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.