IDEAS home Printed from
   My bibliography  Save this article

A Recursive Thick Frontier Approach to Estimating Production Efficiency


  • Rien J. L. M. Wagenvoort
  • Paul H. Schure


We introduce a new panel data estimation technique for production and cost functions, the recursive thick frontier approach (RTFA). RTFA has two advantages over existing econometric frontier methods. First, technical inefficiency is allowed to be dependent on the explanatory variables of the frontier model. Secondly, RTFA does not hinge on distributional assumptions on the inefficiency component of the error term. We show by means of simulation experiments that RTFA outperforms the popular stochastic frontier approach and the 'within' ordinary least squares estimator for realistic parameterizations of a productivity model. Although RTFAs formal statistical properties are unknown, we argue, based on these simulation experiments, that RTFA is a useful complement to existing methods. Copyright 2006 Blackwell Publishing Ltd.

Suggested Citation

  • Rien J. L. M. Wagenvoort & Paul H. Schure, 2006. "A Recursive Thick Frontier Approach to Estimating Production Efficiency," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(2), pages 183-201, April.
  • Handle: RePEc:bla:obuest:v:68:y:2006:i:2:p:183-201

    Download full text from publisher

    File URL:
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Kalirajan, K P & Shand, R T, 1999. " Frontier Production Functions and Technical Efficiency Measures," Journal of Economic Surveys, Wiley Blackwell, vol. 13(2), pages 149-172, April.
    2. van den Broeck, Julien & Koop, Gary & Osiewalski, Jacek & Steel, Mark F. J., 1994. "Stochastic frontier models : A Bayesian perspective," Journal of Econometrics, Elsevier, vol. 61(2), pages 273-303, April.
    3. Kopp, Raymond J. & Mullahy, John, 1990. "Moment-based estimation and testing of stochastic frontier models," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 165-183.
    4. Stevenson, Rodney E., 1980. "Likelihood functions for generalized stochastic frontier estimation," Journal of Econometrics, Elsevier, vol. 13(1), pages 57-66, May.
    5. Battese, George E. & Coelli, Tim J., 1988. "Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data," Journal of Econometrics, Elsevier, vol. 38(3), pages 387-399, July.
    6. Greene, William H., 1980. "Maximum likelihood estimation of econometric frontier functions," Journal of Econometrics, Elsevier, vol. 13(1), pages 27-56, May.
    7. Schmidt, Peter, 1976. "On the Statistical Estimation of Parametric Frontier Production Functions," The Review of Economics and Statistics, MIT Press, vol. 58(2), pages 238-239, May.
    8. Greene, William H., 1990. "A Gamma-distributed stochastic frontier model," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 141-163.
    9. Schmidt, Peter & Sickles, Robin C, 1984. "Production Frontiers and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 367-374, October.
    10. Léopold Simar, 2003. "Detecting Outliers in Frontier Models: A Simple Approach," Journal of Productivity Analysis, Springer, vol. 20(3), pages 391-424, November.
    11. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    12. Kumbhakar, Subal C., 1990. "Production frontiers, panel data, and time-varying technical inefficiency," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 201-211.
    13. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    14. Allen N. Berger & David B. Humphrey, 1992. "Measurement and Efficiency Issues in Commercial Banking," NBER Chapters,in: Output Measurement in the Service Sectors, pages 245-300 National Bureau of Economic Research, Inc.
    15. Cazals, Catherine & Florens, Jean-Pierre & Simar, Leopold, 2002. "Nonparametric frontier estimation: a robust approach," Journal of Econometrics, Elsevier, vol. 106(1), pages 1-25, January.
    16. Hinloopen, Jeroen & Wagenvoort, Rien, 1997. "On the computation and efficiency of a HBP-GM estimator some simulation results," Computational Statistics & Data Analysis, Elsevier, vol. 25(1), pages 1-15, July.
    17. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    18. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    19. Kalirajan, K P & Obwona, M B, 1994. "Frontier Production Function: The Stochastic Coefficients Approach," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 56(1), pages 87-96, February.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Rojas, Mariano, 2012. "Do People in Income Poverty Use Their Income Efficiently? : a Subjective Well-Being Approach," WIDER Working Paper Series 110, World Institute for Development Economic Research (UNU-WIDER).
    2. Jorge David Quinteo Otero & William Orlando Prieto Bustos & Fernando Barrios Aguirre & Laura Elena Leviller Guardo, 2008. "Determinantes de la eficiencia técnica en las empresas colombianas, 2001-2004," REVISTA SEMESTRE ECONÓMICO, UNIVERSIDAD DE MEDELLÍN, November.

    More about this item

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
    • D2 - Microeconomics - - Production and Organizations


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:68:y:2006:i:2:p:183-201. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.