IDEAS home Printed from https://ideas.repec.org/p/ven/wpaper/2011_24.html
   My bibliography  Save this paper

Combining stochastic programming and optimal control to solve multistage stochastic optimization problems

Author

Listed:
  • Diana Barro

    () (Department of Economics, University Of Venice C� Foscari)

  • Elio Canestrelli

    (Department of Economics, University Of Venice C� Foscari)

Abstract

In this contribution we propose an approach to solve a multistage stochastic programming problem which allows us to obtain a time and nodal decomposition of the original problem. This double decomposition is achieved applying a discrete time optimal control formulation to the original stochastic programming problem in arborescent form. Combining the arborescent formulation of the problem with the point of view of the optimal control theory naturally gives as a first result the time decomposability of the optimality conditions, which can be organized according to the terminology and structure of a discrete time optimal control problem into the systems of equation for the state and adjoint variables dynamics and the optimality conditions for the generalized Hamiltonian. Moreover these conditions, due to the arborescent formulation of the stochastic programming problem, further decompose with respect to the nodes in the event tree. The optimal solution is obtained by solving small decomposed subproblems and using a mean valued fixed-point iterative scheme to combine them. To enhance the convergence we suggest an optimization step where the weights are chosen in an optimal way at each iteration.

Suggested Citation

  • Diana Barro & Elio Canestrelli, 2011. "Combining stochastic programming and optimal control to solve multistage stochastic optimization problems," Working Papers 2011_24, Department of Economics, University of Venice "Ca' Foscari", revised 2011.
  • Handle: RePEc:ven:wpaper:2011_24
    as

    Download full text from publisher

    File URL: http://www.unive.it/pag/fileadmin/user_upload/dipartimenti/economia/doc/Pubblicazioni_scientifiche/working_papers/2011/WP_DSE_barro_canestrelli_24_11.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Diana Barro & Elio Canestrelli, 2009. "Tracking error: a multistage portfolio model," Annals of Operations Research, Springer, vol. 165(1), pages 47-66, January.
    2. Diana Barro & Elio Canestrelli, 2005. "Time and nodal decomposition with implicit non-anticipativity constraints in dynamic portfolio optimization," GE, Growth, Math methods 0510011, University Library of Munich, Germany.
    3. A. Ruszczynski, 1994. "On Augmented Lagrangian Decomposition Methods For Multistage Stochastic Programs," Working Papers wp94005, International Institute for Applied Systems Analysis.
    4. Barro, Diana & Canestrelli, Elio, 2005. "Dynamic portfolio optimization: Time decomposition using the Maximum Principle with a scenario approach," European Journal of Operational Research, Elsevier, vol. 163(1), pages 217-229, May.
    5. Jitka Dupačová & Giorgio Consigli & Stein Wallace, 2000. "Scenarios for Multistage Stochastic Programs," Annals of Operations Research, Springer, vol. 100(1), pages 25-53, December.
    6. John R. Birge, 1985. "Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs," Operations Research, INFORMS, vol. 33(5), pages 989-1007, October.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Stochastic programming; discrete time control problem; decomposition methods; iterative scheme;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ven:wpaper:2011_24. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Geraldine Ludbrook). General contact details of provider: http://edirc.repec.org/data/dsvenit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.