IDEAS home Printed from https://ideas.repec.org/p/upf/upfgen/1066.html
   My bibliography  Save this paper

On bounds for network revenue management

Author

Listed:
  • Kalyan Talluri

Abstract

The Network Revenue Management problem can be formulated as a stochastic dynamic programming problem (DP or the\optimal" solution V *) whose exact solution is computationally intractable. Consequently, a number of heuristics have been proposed in the literature, the most popular of which are the deterministic linear programming (DLP) model, and a simulation based method, the randomized linear programming (RLP) model. Both methods give upper bounds on the optimal solution value (DLP and PHLP respectively). These bounds are used to provide control values that can be used in practice to make accept/deny decisions for booking requests. Recently Adelman [1] and Topaloglu [18] have proposed alternate upper bounds, the affine relaxation (AR) bound and the Lagrangian relaxation (LR) bound respectively, and showed that their bounds are tighter than the DLP bound. Tight bounds are of great interest as it appears from empirical studies and practical experience that models that give tighter bounds also lead to better controls (better in the sense that they lead to more revenue). In this paper we give tightened versions of three bounds, calling themsAR (strong Affine Relaxation), sLR (strong Lagrangian Relaxation) and sPHLP (strong Perfect Hindsight LP), and show relations between them. Speciffically, we show that the sPHLP bound is tighter than sLR bound and sAR bound is tighter than the LR bound. The techniques for deriving the sLR and sPHLP bounds can potentially be applied to other instances of weakly-coupled dynamic programming.

Suggested Citation

  • Kalyan Talluri, 2008. "On bounds for network revenue management," Economics Working Papers 1066, Department of Economics and Business, Universitat Pompeu Fabra, revised May 2009.
  • Handle: RePEc:upf:upfgen:1066
    as

    Download full text from publisher

    File URL: https://econ-papers.upf.edu/papers/1066.pdf
    File Function: Whole Paper
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kalyan Talluri & Garrett van Ryzin, 1999. "A Randomized Linear Programming Method for Computing Network Bid Prices," Transportation Science, INFORMS, vol. 33(2), pages 207-216, May.
    2. Kalyan Talluri & Garrett van Ryzin, 2004. "Revenue Management Under a General Discrete Choice Model of Consumer Behavior," Management Science, INFORMS, vol. 50(1), pages 15-33, January.
    3. Jeffrey I. McGill & Garrett J. van Ryzin, 1999. "Revenue Management: Research Overview and Prospects," Transportation Science, INFORMS, vol. 33(2), pages 233-256, May.
    4. Daniel Adelman, 2007. "Dynamic Bid Prices in Revenue Management," Operations Research, INFORMS, vol. 55(4), pages 647-661, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steinhardt, Claudius & Gönsch, Jochen, 2012. "Integrated revenue management approaches for capacity control with planned upgrades," European Journal of Operational Research, Elsevier, vol. 223(2), pages 380-391.
    2. Sumit Kunnumkal & Kalyan Talluri & Huseyin Topaloglu, 2012. "A Randomized Linear Programming Method for Network Revenue Management with Product-Specific No-Shows," Transportation Science, INFORMS, vol. 46(1), pages 90-108, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meissner, Joern & Strauss, Arne, 2012. "Network revenue management with inventory-sensitive bid prices and customer choice," European Journal of Operational Research, Elsevier, vol. 216(2), pages 459-468.
    2. Meissner, Joern & Strauss, Arne, 2012. "Improved bid prices for choice-based network revenue management," European Journal of Operational Research, Elsevier, vol. 217(2), pages 417-427.
    3. Nicolas Houy & François Le Grand, 2015. "The Monte Carlo first-come-first-served heuristic for network revenue management," Working Papers halshs-01155698, HAL.
    4. Laumer, Simon & Barz, Christiane, 2023. "Reductions of non-separable approximate linear programs for network revenue management," European Journal of Operational Research, Elsevier, vol. 309(1), pages 252-270.
    5. Syed Asif Raza & Rafi Ashrafi & Ali Akgunduz, 2020. "A bibliometric analysis of revenue management in airline industry," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(6), pages 436-465, December.
    6. Meng, Qiang & Zhao, Hui & Wang, Yadong, 2019. "Revenue management for container liner shipping services: Critical review and future research directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 280-292.
    7. Dan Zhang & Larry Weatherford, 2017. "Dynamic Pricing for Network Revenue Management: A New Approach and Application in the Hotel Industry," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 18-35, February.
    8. Wuyang Yuan & Lei Nie & Xin Wu & Huiling Fu, 2018. "A dynamic bid price approach for the seat inventory control problem in railway networks with consideration of passenger transfer," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-23, August.
    9. Gönsch, Jochen & Koch, Sebastian & Steinhardt, Claudius, 2014. "Revenue management with flexible products: The value of flexibility and its incorporation into DLP-based approaches," International Journal of Production Economics, Elsevier, vol. 153(C), pages 280-294.
    10. Nicolas Houy & François Le Grand, 2015. "Financing and advising with (over)confident entrepreneurs : an experimental investigation," Working Papers 1514, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    11. Yuri Levin & Mikhail Nediak & Huseyin Topaloglu, 2012. "Cargo Capacity Management with Allotments and Spot Market Demand," Operations Research, INFORMS, vol. 60(2), pages 351-365, April.
    12. Strauss, Arne K. & Klein, Robert & Steinhardt, Claudius, 2018. "A review of choice-based revenue management: Theory and methods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 375-387.
    13. Thomas W. M. Vossen & Dan Zhang, 2015. "Reductions of Approximate Linear Programs for Network Revenue Management," Operations Research, INFORMS, vol. 63(6), pages 1352-1371, December.
    14. Hu, Qiying & Wei, Yihua & Xia, Yusen, 2010. "Revenue management for a supply chain with two streams of customers," European Journal of Operational Research, Elsevier, vol. 200(2), pages 582-598, January.
    15. Irene Ng & Nick K.T. Yip, 2009. "Mechanism design in an integrated approach towards revenue management: the case of Empress Cruise Lines," The Service Industries Journal, Taylor & Francis Journals, vol. 31(3), pages 469-482, February.
    16. Lingxiu Dong & Panos Kouvelis & Zhongjun Tian, 2009. "Dynamic Pricing and Inventory Control of Substitute Products," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 317-339, December.
    17. Banerjee, Nilabhra & Morton, Alec & Akartunalı, Kerem, 2020. "Passenger demand forecasting in scheduled transportation," European Journal of Operational Research, Elsevier, vol. 286(3), pages 797-810.
    18. Narayan Mishra & Sri Vanamalla Venkataraman, 2022. "Optimal order quantity in the presence of strategic customers," Annals of Operations Research, Springer, vol. 315(2), pages 1871-1894, August.
    19. Yuhang Ma & Paat Rusmevichientong & Mika Sumida & Huseyin Topaloglu, 2020. "An Approximation Algorithm for Network Revenue Management Under Nonstationary Arrivals," Operations Research, INFORMS, vol. 68(3), pages 834-855, May.
    20. Yingjie Lan & Huina Gao & Michael O. Ball & Itir Karaesmen, 2008. "Revenue Management with Limited Demand Information," Management Science, INFORMS, vol. 54(9), pages 1594-1609, September.

    More about this item

    Keywords

    revenue management; bid-prices; relaxations; bounds;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • L93 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Air Transportation
    • L83 - Industrial Organization - - Industry Studies: Services - - - Sports; Gambling; Restaurants; Recreation; Tourism
    • M11 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Production Management

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:upf:upfgen:1066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.upf.edu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.