IDEAS home Printed from https://ideas.repec.org/p/uct/uconnp/2025-10.html
   My bibliography  Save this paper

Sieve Bootstrap Approach to Robust Term Premia Analysis

Author

Listed:
  • Jungbin Hwang

    (University of Connecticut)

  • Feifan Wang

    (University of Connecticut)

Abstract

Robust inference in bond predictive regressions faces challenges due to strong time-series per-sistence and unknown cross-sectional factor structures in the bond yield vector. These diffi-culties are particularly pronounced in analyzing the spanning hypothesis, which tests whether factors beyond the first three principal components (PCs)—level, slope, and curvature—improve bond return predictability. To address this, we develop a novel nonparametric sieve bootstrap approach for multivariate bond yield data with different maturities. Our method provides accurate size and improved power performance in bond predictive regression, com-pared to existing bootstrap inference procedures for the spanning hypothesis. Revisiting Cochrane and Piazzesi (2005)’s return-forecasting factor, we find strong evidence of its pre-dictive power beyond the first three PCs for bond excess returns in most sample periods after the 1960s. However, we find that these predictive gains significantly decline when the sample period extends to include recent years after 2019.

Suggested Citation

  • Jungbin Hwang & Feifan Wang, 2025. "Sieve Bootstrap Approach to Robust Term Premia Analysis," Working papers 2025-10, University of Connecticut, Department of Economics.
  • Handle: RePEc:uct:uconnp:2025-10
    Note: Jungbin Hwang is the corresponding author
    as

    Download full text from publisher

    File URL: https://media.economics.uconn.edu/working/2025-10.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Min Wei & Jonathan H. Wright, 2013. "Reverse Regressions And Long‐Horizon Forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(3), pages 353-371, April.
    2. Ravi Bansal & Ivan Shaliastovich, 2013. "A Long-Run Risks Explanation of Predictability Puzzles in Bond and Currency Markets," The Review of Financial Studies, Society for Financial Studies, vol. 26(1), pages 1-33.
    3. Phillips, Peter C B, 1988. "Regression Theory for Near-Integrated Time Series," Econometrica, Econometric Society, vol. 56(5), pages 1021-1043, September.
    4. Sydney C. Ludvigson & Serena Ng, 2009. "Macro Factors in Bond Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 22(12), pages 5027-5067, December.
    5. Goetzmann, William Nelson & Jorion, Philippe, 1993. "Testing the Predictive Power of Dividend Yields," Journal of Finance, American Finance Association, vol. 48(2), pages 663-679, June.
    6. Xu, Ke-Li, 2020. "Inference of local regression in the presence of nuisance parameters," Journal of Econometrics, Elsevier, vol. 218(2), pages 532-560.
    7. Robin Greenwood & Dimitri Vayanos, 2014. "Bond Supply and Excess Bond Returns," The Review of Financial Studies, Society for Financial Studies, vol. 27(3), pages 663-713.
    8. Duffee, Gregory R., 2013. "Bond Pricing and the Macroeconomy," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 907-967, Elsevier.
    9. Lutz Kilian, 1998. "Small-Sample Confidence Intervals For Impulse Response Functions," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 218-230, May.
    10. Anna Cieslak & Pavol Povala, 2015. "Expected Returns in Treasury Bonds," The Review of Financial Studies, Society for Financial Studies, vol. 28(10), pages 2859-2901.
    11. Scott Joslin & Marcel Priebsch & Kenneth J. Singleton, 2014. "Risk Premiums in Dynamic Term Structure Models with Unspanned Macro Risks," Journal of Finance, American Finance Association, vol. 69(3), pages 1197-1233, June.
    12. Newey, Whitney K & West, Kenneth D, 1987. "Hypothesis Testing with Efficient Method of Moments Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 28(3), pages 777-787, October.
    13. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    14. Michael D. Bauer & James D. Hamilton, 2018. "Robust Bond Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 31(2), pages 399-448.
    15. Campbell, John Y. & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Journal of Financial Economics, Elsevier, vol. 81(1), pages 27-60, July.
    16. Richard K. Crump & Nikolay Gospodinov, 2022. "On the Factor Structure of Bond Returns," Econometrica, Econometric Society, vol. 90(1), pages 295-314, January.
    17. Valkanov, Rossen, 2003. "Long-horizon regressions: theoretical results and applications," Journal of Financial Economics, Elsevier, vol. 68(2), pages 201-232, May.
    18. Cavanagh, Christopher L. & Elliott, Graham & Stock, James H., 1995. "Inference in Models with Nearly Integrated Regressors," Econometric Theory, Cambridge University Press, vol. 11(5), pages 1131-1147, October.
    19. Stambaugh, Robert F., 1999. "Predictive regressions," Journal of Financial Economics, Elsevier, vol. 54(3), pages 375-421, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael D. Bauer & James D. Hamilton, 2018. "Robust Bond Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 31(2), pages 399-448.
    2. Hjalmarsson, Erik, 2008. "Interpreting long-horizon estimates in predictive regressions," Finance Research Letters, Elsevier, vol. 5(2), pages 104-117, June.
    3. Erik Hjalmarsson, 2006. "Inference in Long-Horizon Regressions," International Finance Discussion Papers 853, Board of Governors of the Federal Reserve System (U.S.).
    4. Valentin Haddad & David Sraer, 2020. "The Banking View of Bond Risk Premia," Journal of Finance, American Finance Association, vol. 75(5), pages 2465-2502, October.
    5. Xiaosai Liao & Xinjue Li & Qingliang Fan, 2024. "Robust Bond Risk Premia Predictability Test in the Quantiles," Papers 2410.03557, arXiv.org.
    6. Boudoukh, Jacob & Israel, Ronen & Richardson, Matthew, 2022. "Biases in long-horizon predictive regressions," Journal of Financial Economics, Elsevier, vol. 145(3), pages 937-969.
    7. Nelson C. Mark & Donggyu Sul, 2004. "The Use of Predictive Regressions at Alternative Horizons in Finance and Economics," Finance 0409032, University Library of Munich, Germany.
    8. Hansen, Jorge Wolfgang, 2025. "Unspanned stochastic volatility in the linear-rational square-root model: Evidence from the Treasury market," Journal of Banking & Finance, Elsevier, vol. 171(C).
    9. Bekaert, Geert & Engstrom, Eric & Ermolov, Andrey, 2021. "Macro risks and the term structure of interest rates," Journal of Financial Economics, Elsevier, vol. 141(2), pages 479-504.
    10. Kostakis, Alexandros & Magdalinos, Tassos & Stamatogiannis, Michalis P., 2023. "Taking stock of long-horizon predictability tests: Are factor returns predictable?," Journal of Econometrics, Elsevier, vol. 237(2).
    11. Qi Liu & Libin Tao & Weixing Wu & Jianfeng Yu, 2017. "Short- and Long-Run Business Conditions and Expected Returns," Management Science, INFORMS, vol. 63(12), pages 4137-4157, December.
    12. Hjalmarsson, Erik, 2005. "On the Predictability of Global Stock Returns," Working Papers in Economics 161, University of Gothenburg, Department of Economics.
    13. Liu, Yan & Wu, Jing Cynthia, 2021. "Reconstructing the yield curve," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1395-1425.
    14. Paulo M.M. Rodrigues & Antonio Rubia, 2011. "A Class of Robust Tests in Augmented Predictive Regressions," Working Papers w201126, Banco de Portugal, Economics and Research Department.
    15. Su, Hao & Ying, Chengwei & Zhu, Xiaoneng, 2022. "Disaster risk matters in the bond market," Finance Research Letters, Elsevier, vol. 47(PA).
    16. Demetrescu, Matei & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2023. "Transformed regression-based long-horizon predictability tests," Journal of Econometrics, Elsevier, vol. 237(2).
    17. Rui Liu, 2019. "Forecasting Bond Risk Premia with Unspanned Macroeconomic Information," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-62, March.
    18. Indrajit Mitra & Yu Xu, 2020. "Limited Household Risk Sharing: General Equilibrium Implications for the Term Structure of Interest Rates," FRB Atlanta Working Paper 2020-20, Federal Reserve Bank of Atlanta.
    19. Chiquoine, Benjamin & Hjalmarsson, Erik, 2009. "Jackknifing stock return predictions," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 793-803, December.
    20. Doshi, Hitesh & Jacobs, Kris & Liu, Rui, 2018. "Macroeconomic determinants of the term structure: Long-run and short-run dynamics," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 99-122.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uct:uconnp:2025-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mark McConnel (email available below). General contact details of provider: https://edirc.repec.org/data/deuctus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.