IDEAS home Printed from https://ideas.repec.org/p/ssa/lemwps/2025-18.html
   My bibliography  Save this paper

Reassessing the Cross-Sectional Fiscal Multiplier: Evidence from U.S. Defense Procurement, 1966-2019

Author

Listed:
  • Gianluca Pallante

Abstract

This paper revisits the empirical analysis of Nakamura and Steinsson (2014). I reconstruct and extend the original dataset to cover the period 1966-2019, harmonizing two major sources of data: the Defense Contract Action Data System (DCADS) and USAspending.gov. I discuss how to aggregate these contract-level data to better capture spending more directly tied to domestic stimulus. Estimated multipliers are slightly lower in narrow replications but increase when incorporating later fiscal episodes. I also assess the validity and the stability of cross-sectional estimates. While some heterogeneity exists, dispersion in state-level responses remains within reasonable boundaries, especially when accounting for dynamic persistence.

Suggested Citation

  • Gianluca Pallante, 2025. "Reassessing the Cross-Sectional Fiscal Multiplier: Evidence from U.S. Defense Procurement, 1966-2019," LEM Papers Series 2025/18, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
  • Handle: RePEc:ssa:lemwps:2025/18
    as

    Download full text from publisher

    File URL: http://www.lem.sssup.it/WPLem/files/2025-18.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabio Canova & Evi Pappa, 2025. "The Macroeconomic Effects of EU Regional Structural Funds," Journal of the European Economic Association, European Economic Association, vol. 23(1), pages 327-360.
    2. Donald W. K. Andrews, 2005. "Cross-Section Regression with Common Shocks," Econometrica, Econometric Society, vol. 73(5), pages 1551-1585, September.
    3. Tommaso Ferraresi & Andrea Roventini & Giorgio Fagiolo, 2015. "Fiscal Policies and Credit Regimes: A TVAR Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(7), pages 1047-1072, November.
    4. Blanchard, Olivier J. & Romer, David & Spence, Michael & Stiglitz, Joseph E. (ed.), 2012. "In the Wake of the Crisis: Leading Economists Reassess Economic Policy," MIT Press Books, The MIT Press, edition 1, volume 1, number 026201761x, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Georgios Gioldasis & Antonio Musolesi & Michel Simioni, 2020. "Model uncertainty, nonlinearities and out-of-sample comparison: evidence from international technology diffusion," Working Papers hal-02790523, HAL.
    2. Anatolyev, Stanislav & Mikusheva, Anna, 2021. "Limit Theorems For Factor Models," Econometric Theory, Cambridge University Press, vol. 37(5), pages 1034-1074, October.
    3. repec:spo:wpmain:info:hdl:2441/3l2vounfl99nvqsr0k24sn3k5l is not listed on IDEAS
    4. Andrea Boitani & Salvatore Perdichizzi & Chiara Punzo, 2022. "Nonlinearities and expenditure multipliers in the Eurozone [Tales of fiscal adjustment]," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 31(2), pages 552-575.
    5. Andersen, Torben G. & Fusari, Nicola & Todorov, Viktor & Varneskov, Rasmus T., 2019. "Unified inference for nonlinear factor models from panels with fixed and large time span," Journal of Econometrics, Elsevier, vol. 212(1), pages 4-25.
    6. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    7. Tooba Pervaiz Banday & Ekrem Erdem, 2024. "ICT and declining labor productivity in OECD," SN Business & Economics, Springer, vol. 4(3), pages 1-19, March.
    8. Kojevnikov, Denis & Song, Kyungchul, 2023. "Econometric inference on a large Bayesian game with heterogeneous beliefs," Journal of Econometrics, Elsevier, vol. 237(1).
    9. Felipa de Mello-Sampayo & Sofia de Sousa-Vale, 2014. "Financing Health Care Expenditure in the OECD Countries: Evidence from a Heterogeneous, Cross-Sectional Dependent Panel," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 61(2), pages 207-225, March.
    10. Moscone, F. & Tosetti, E., 2010. "Testing for error cross section independence with an application to US health expenditure," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 283-291, September.
    11. Gian Paulo Soave, 2015. "Choques fiscais e instabilidade financeira no Brasil: uma abordagem TVAR," Working Papers, Department of Economics 2015_02, University of São Paulo (FEA-USP).
    12. Baltagi, Badi H. & Moscone, Francesco, 2010. "Health care expenditure and income in the OECD reconsidered: Evidence from panel data," Economic Modelling, Elsevier, vol. 27(4), pages 804-811, July.
    13. Hamit-Haggar, Mahamat, 2012. "Greenhouse gas emissions, energy consumption and economic growth: A panel cointegration analysis from Canadian industrial sector perspective," Energy Economics, Elsevier, vol. 34(1), pages 358-364.
    14. Debopam Bhattacharya & Pascaline Dupas & Shin Kanaya, 2024. "Demand and Welfare Analysis in Discrete Choice Models with Social Interactions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(2), pages 748-784.
    15. Lee, Jungyoon & Robinson, Peter M., 2016. "Series estimation under cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 190(1), pages 1-17.
    16. André M. Marques, 2022. "Reviewing demand regimes in open economies with Penn World Table data," Manchester School, University of Manchester, vol. 90(6), pages 730-751, December.
    17. Costantini, Mauro & Gutierrez, Luciano, 2013. "Capital mobility and global factor shocks," Economics Letters, Elsevier, vol. 120(3), pages 513-515.
    18. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "A diagnostic criterion for approximate factor structure," Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
    19. Jungyoon Lee & Peter Robinson, 2016. "Series estimation under cross-sectional dependence," LSE Research Online Documents on Economics 63380, London School of Economics and Political Science, LSE Library.
    20. Adolfo Maza & Paula Gutiérrez-Portilla, 2022. "Outward FDI and exports relation: A heterogeneous panel approach dealing with cross-sectional dependence," International Economics, CEPII research center, issue 170, pages 174-189.
    21. Munir, Qaiser & Lean, Hooi Hooi & Smyth, Russell, 2020. "CO2 emissions, energy consumption and economic growth in the ASEAN-5 countries: A cross-sectional dependence approach," Energy Economics, Elsevier, vol. 85(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ssa:lemwps:2025/18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge The email address of this maintainer does not seem to be valid anymore. Please ask the person in charge to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/labssit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.