IDEAS home Printed from https://ideas.repec.org/p/ssa/lemwps/2005-13.html
   My bibliography  Save this paper

Scientific and Technological Regimes in Nanotechnology: Combinatorial Inventors and Performance

Author

Listed:
  • Andrea Bonaccorsi
  • Grid Thoma

Abstract

Academics and policy makers are questioning about the relation between science and technology in the emerging field of nano science and technology (NST) and the effectiveness of different institutional regimes. We analyze the performance of inventors in the NST using multiple indicators. We clustered patents in three groups according to the scientific curricula of the inventors. The first two groups are composed by patents whose inventors respectively are all authors of at least one scientific publication in the NST and none of then has obtained a scientific publication in that field. Thirdly, we isolated those patents that have at least one inventor, who is also author of at least one scientific publication in the NST. The underlining presumption of this classification is that of a proxy of different institutional search regimes of the inventive activity; pure academic research, pure industrial R&D, and academic-industrial research partnerships.

Suggested Citation

  • Andrea Bonaccorsi & Grid Thoma, 2005. "Scientific and Technological Regimes in Nanotechnology: Combinatorial Inventors and Performance," LEM Papers Series 2005/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
  • Handle: RePEc:ssa:lemwps:2005/13
    as

    Download full text from publisher

    File URL: http://www.lem.sssup.it/WPLem/files/2005-13.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jason Owen-Smith & Massimo Riccaboni & Fabio Pammolli & Walter W. Powell, 2002. "A Comparison of U.S. and European University-Industry Relations in the Life Sciences," Management Science, INFORMS, vol. 48(1), pages 24-43, January.
    2. Meyer, Martin, 2000. "Does science push technology? Patents citing scientific literature," Research Policy, Elsevier, vol. 29(3), pages 409-434, March.
    3. Stefano Breschi & Francesco Lissoni, 2004. "Knowledge networks from patent data: Methodological issues and research targets," KITeS Working Papers 150, KITeS, Centre for Knowledge, Internationalization and Technology Studies, Universita' Bocconi, Milano, Italy, revised Jan 2004.
    4. Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1993. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," The Quarterly Journal of Economics, Oxford University Press, vol. 108(3), pages 577-598.
    5. Kenney, Martin & Richard Goe, W., 2004. "The role of social embeddedness in professorial entrepreneurship: a comparison of electrical engineering and computer science at UC Berkeley and Stanford," Research Policy, Elsevier, vol. 33(5), pages 691-707, July.
    6. Bronwyn H. Hall & Manuel Trajtenberg, 2004. "Uncovering GPTS with Patent Data," NBER Working Papers 10901, National Bureau of Economic Research, Inc.
    7. Lanjouw, Jean O & Pakes, Ariel & Putnam, Jonathan, 1998. "How to Count Patents and Value Intellectual Property: The Uses of Patent Renewal and Application Data," Journal of Industrial Economics, Wiley Blackwell, vol. 46(4), pages 405-432, December.
    8. Iain M. Cockburn & Samuel Kortum & Scott Stern, 2002. "Are All Patent Examiners Equal? The Impact of Examiner Characteristics," NBER Working Papers 8980, National Bureau of Economic Research, Inc.
    9. Scott Shane, 2001. "Technology Regimes and New Firm Formation," Management Science, INFORMS, vol. 47(9), pages 1173-1190, September.
    10. Barry Bozeman & Vincent Mangematin, 2004. "Editor's Introduction: Scientific and Technical Human Capital," Grenoble Ecole de Management (Post-Print) hal-00424506, HAL.
    11. Barry Bozeman & Vincent Mangematin, 2004. "Editor's Introduction: Scientific and Technical Human Capital," Post-Print hal-00424506, HAL.
    12. Bozeman, Barry & Mangematin, Vincent, 2004. "Editor's introduction: building and deploying scientific and technical human capital," Research Policy, Elsevier, vol. 33(4), pages 565-568, May.
    13. Paul Almeida & Bruce Kogut, 1999. "Localization of Knowledge and the Mobility of Engineers in Regional Networks," Management Science, INFORMS, vol. 45(7), pages 905-917, July.
    14. Manuel Trajtenberg & Rebecca Henderson & Adam Jaffe, 1997. "University Versus Corporate Patents: A Window On The Basicness Of Invention," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 5(1), pages 19-50.
    15. Jean O. Lanjouw & Ariel Pakes & Jonathan Putnam, 1998. "How to Count Patents and Value Intellectual Property: The Uses of Patent Renewal and Application Data," Journal of Industrial Economics, Wiley Blackwell, vol. 46(4), pages 405-432, December.
    16. Michelle Gittelman & Bruce Kogut, 2003. "Does Good Science Lead to Valuable Knowledge? Biotechnology Firms and the Evolutionary Logic of Citation Patterns," Management Science, INFORMS, vol. 49(4), pages 366-382, April.
    17. Jean O. Lanjouw & Mark Schankerman, 2004. "Patent Quality and Research Productivity: Measuring Innovation with Multiple Indicators," Economic Journal, Royal Economic Society, vol. 114(495), pages 441-465, April.
    18. Balconi, Margherita & Breschi, Stefano & Lissoni, Francesco, 2004. "Networks of inventors and the role of academia: an exploration of Italian patent data," Research Policy, Elsevier, vol. 33(1), pages 127-145, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Can Huang & Ad Notten & Nico Rasters, 2011. "Nanoscience and technology publications and patents: a review of social science studies and search strategies," The Journal of Technology Transfer, Springer, vol. 36(2), pages 145-172, April.
    2. Palmberg, Christopher & Nikulainen, Tuomo, 2006. "Industrial Renewal and Growth through Nanotechnology ? - An Overview with Focus on Finland," Discussion Papers 1020, The Research Institute of the Finnish Economy.
    3. Martin Meyer, 2007. "What do we know about innovation in nanotechnology? Some propositions about an emerging field between hype and path-dependency," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 779-810, March.
    4. Palmberg, Christopher, 2007. "Modes, Challenges and Outcomes of Nanotechnology Transfer - A Comparative Analysis University and Company Researchers," Discussion Papers 1086, The Research Institute of the Finnish Economy.
    5. Fiedler, Marina & Welpe, Isabell M., 2010. "Antecedents of cooperative commercialisation strategies of nanotechnology firms," Research Policy, Elsevier, vol. 39(3), pages 400-410, April.
    6. Elise Bassecoulard & Alain Lelu & Michel Zitt, 2007. "Mapping nanosciences by citation flows: A preliminary analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 70(3), pages 859-880, March.
    7. Palmberg, Christopher & Pajarinen, Mika & Nikulainen, Tuomo, 2007. "Transferring Science-based Technologies to Industry - Does Nanotechnology Make a Difference?," Discussion Papers 1064, The Research Institute of the Finnish Economy.
    8. Huang, Can & Notten, Ad & Rasters, Nico, 2008. "Nanotechnology Publications and Patents: A Review of Social Science Studies and Search Strategies," MERIT Working Papers 2008-058, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bonaccorsi, Andrea & Thoma, Grid, 2007. "Institutional complementarity and inventive performance in nano science and technology," Research Policy, Elsevier, vol. 36(6), pages 813-831, July.
    2. Bulat Sanditov, 2005. "Patent Citations, the Value of Innovations and Path-Dependency," KITeS Working Papers 177, KITeS, Centre for Knowledge, Internationalization and Technology Studies, Universita' Bocconi, Milano, Italy, revised Nov 2005.
    3. Cantner, Uwe & Graf, Holger, 2006. "The network of innovators in Jena: An application of social network analysis," Research Policy, Elsevier, vol. 35(4), pages 463-480, May.
    4. Breschi, Stefano & Catalini, Christian, 2010. "Tracing the links between science and technology: An exploratory analysis of scientists' and inventors' networks," Research Policy, Elsevier, vol. 39(1), pages 14-26, February.
    5. Moaniba, Igam M. & Lee, Pei-Chun & Su, Hsin-Ning, 2020. "How does external knowledge sourcing enhance product development? Evidence from drug commercialization," Technology in Society, Elsevier, vol. 63(C).
    6. Corradini, Carlo & De Propris, Lisa, 2017. "Beyond local search: Bridging platforms and inter-sectoral technological integration," Research Policy, Elsevier, vol. 46(1), pages 196-206.
    7. RAITERI Emilio, 2015. "A time to nourish? Evaluating the impact of innovative public procurement on technological generality through patent data," Cahiers du GREThA (2007-2019) 2015-05, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    8. Choi, Mincheol & Lee, Chang-Yang, 2021. "Technological diversification and R&D productivity: The moderating effects of knowledge spillovers and core-technology competence," Technovation, Elsevier, vol. 104(C).
    9. Raiteri, Emilio, 2018. "A time to nourish? Evaluating the impact of public procurement on technological generality through patent data," Research Policy, Elsevier, vol. 47(5), pages 936-952.
    10. Barirani, Ahmad & Beaudry, Catherine & Agard, Bruno, 2017. "Can universities profit from general purpose inventions? The case of Canadian nanotechnology patents," Technological Forecasting and Social Change, Elsevier, vol. 120(C), pages 271-283.
    11. Higham, Kyle & de Rassenfosse, Gaétan & Jaffe, Adam B., 2021. "Patent Quality: Towards a Systematic Framework for Analysis and Measurement," Research Policy, Elsevier, vol. 50(4).
    12. Juan Alcácer & Minyuan Zhao, 2012. "Local R&D Strategies and Multilocation Firms: The Role of Internal Linkages," Management Science, INFORMS, vol. 58(4), pages 734-753, April.
    13. Beaudry, Catherine & Schiffauerova, Andrea, 2011. "Impacts of collaboration and network indicators on patent quality: The case of Canadian nanotechnology innovation," European Management Journal, Elsevier, vol. 29(5), pages 362-376.
    14. Yang, Hongyan & Steensma, H. Kevin, 2014. "When do firms rely on their knowledge spillover recipients for guidance in exploring unfamiliar knowledge?," Research Policy, Elsevier, vol. 43(9), pages 1496-1507.
    15. Lettl, Christopher & Rost, Katja & von Wartburg, Iwan, 2009. "Why are some independent inventors 'heroes' and others 'hobbyists'? The moderating role of technological diversity and specialization," Research Policy, Elsevier, vol. 38(2), pages 243-254, March.
    16. Stuart J. H. Graham & Alan C. Marco & Amanda F. Myers, 2018. "Patent transactions in the marketplace: Lessons from the USPTO Patent Assignment Dataset," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 27(3), pages 343-371, September.
    17. Yuan Zhou & Fang Dong & Yufei Liu & Liang Ran, 2021. "A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 969-994, February.
    18. Barbieri, Nicolò & Marzucchi, Alberto & Rizzo, Ugo, 2020. "Knowledge sources and impacts on subsequent inventions: Do green technologies differ from non-green ones?," Research Policy, Elsevier, vol. 49(2).
    19. Sarah Kaplan & Keyvan Vakili, 2015. "The double-edged sword of recombination in breakthrough innovation," Strategic Management Journal, Wiley Blackwell, vol. 36(10), pages 1435-1457, October.
    20. Paola Giuri & Myriam Mariani & Stefano Brusoni & Gustavo Crespi & Dominique Francoz & Alfonso Gambardella & Walter Garcia-Fontes & Aldo Geuna & Raul Gonzales & Dietmar Harhoff & Karin Hoisl & Christia, 2005. "Everything you Always Wanted to Know about Inventors (but Never Asked): Evidence from the PatVal-EU Survey," LEM Papers Series 2005/20, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.

    More about this item

    Keywords

    Science-Technology Relation; Emerging Field; Nanotechnology; Patent Quality; Inventive Productivity.;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ssa:lemwps:2005/13. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/labssit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: https://edirc.repec.org/data/labssit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.