IDEAS home Printed from https://ideas.repec.org/p/snv/dp2009/2014114.html
   My bibliography  Save this paper

How Variability in Individual Patterns of Behavior Changes the Structural Properties of Networks

Author

Listed:
  • Somayeh Koohborfardhaghighi

    (Technology Management, Economics, and Policy Program, College of Engineering, Seoul National University)

  • Jorn Altmann

    (Technology Management, Economics, and Policy Program, College of Engineering, Seoul National University)

Abstract

Dynamic processes in complex networks have received much attention. This attention reflects the fact that dynamic processes are the main source of changes in the structural properties of complex networks (e.g., clustering coefficient and average shortest-path length). In this paper, we develop an agent-based model to capture, compare, and explain the structural changes within a growing social network with respect to individuals’ social characteristics (e.g., their activities for expanding social relations beyond their social circles). According to our simulation results, the probability increases that the network’s average shortest-path length is between 3 and 4, if most of the dynamic processes are based on random link formations. That means, in Facebook, the existing average shortest path length of 4.7 can even shrink to smaller values. Another result is that, if the node increase is larger than the link increase when the network is formed, the probability increases that the average shortest-path length is between 4 and 8.

Suggested Citation

  • Somayeh Koohborfardhaghighi & Jorn Altmann, 2014. "How Variability in Individual Patterns of Behavior Changes the Structural Properties of Networks," TEMEP Discussion Papers 2014114, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Jun 2014.
  • Handle: RePEc:snv:dp2009:2014114
    as

    Download full text from publisher

    File URL: http://temep-repec.my-groups.de/DP-114.pdf
    File Function: First version, 2014
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jackson, Matthew O. & Wolinsky, Asher, 1996. "A Strategic Model of Social and Economic Networks," Journal of Economic Theory, Elsevier, vol. 71(1), pages 44-74, October.
    2. Andrea Galeotti & Sanjeev Goyal & Matthew O. Jackson & Fernando Vega-Redondo & Leeat Yariv, 2010. "Network Games," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(1), pages 218-244.
    3. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 1999. "Mean-field theory for scale-free random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 272(1), pages 173-187.
    4. Somayeh Koohborfardhaghighi & Jorn Altmann, 2014. "How Placing Limitations on the Size of Personal Networks Changes the Structural Properties of Complex Networks," TEMEP Discussion Papers 2014110, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Jan 2014.
    5. Somayeh Koohborfardhaghighi & Jorn Altmann, 2014. "How Structural Changes in Complex Networks Impact Organizational Learning Performance," TEMEP Discussion Papers 2014111, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Mar 2014.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Somayeh Koohborfardhaghighi & Jorn Altmann, 2016. "How Network Visibility and Strategic Networking Leads to the Emergence of Certain Network Characteristics: A Complex Adaptive System Approach," TEMEP Discussion Papers 2016130, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Aug 2016.
    2. Somayeh Koohborfardhaghighi & Jorn Altmann, 2016. "How Strategic Networking Impacts the Networking Outcome: A Complex Adaptive System Approach," TEMEP Discussion Papers 2016131, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Aug 2016.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Somayeh Koohborfardhaghighi & Jorn Altmann, 2016. "How Strategic Networking Impacts the Networking Outcome: A Complex Adaptive System Approach," TEMEP Discussion Papers 2016131, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Aug 2016.
    2. Somayeh Koohborfardhaghighi & Jorn Altmann, 2016. "How Network Visibility and Strategic Networking Leads to the Emergence of Certain Network Characteristics: A Complex Adaptive System Approach," TEMEP Discussion Papers 2016130, Seoul National University; Technology Management, Economics, and Policy Program (TEMEP), revised Aug 2016.
    3. Sergio Currarini & Carmen Marchiori & Alessandro Tavoni, 2016. "Network Economics and the Environment: Insights and Perspectives," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(1), pages 159-189, September.
    4. Sanjeev Goyal & Marco J. van der Leij & José Luis Moraga-Gonzalez, 2006. "Economics: An Emerging Small World," Journal of Political Economy, University of Chicago Press, vol. 114(2), pages 403-432, April.
    5. de Marti, Joan & Zenou, Yves, 2009. "Social Networks," Working Paper Series 816, Research Institute of Industrial Economics.
    6. Dunia Lopez-Pintado, 2016. "Influence networks and public goods," UMASS Amherst Economics Working Papers 2016-12, University of Massachusetts Amherst, Department of Economics.
    7. Myeonghwan Cho, 2010. "Endogenous formation of networks for local public goods," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(4), pages 529-562, October.
    8. Acemoglu, Daron & Malekian, Azarakhsh & Ozdaglar, Asu, 2016. "Network security and contagion," Journal of Economic Theory, Elsevier, vol. 166(C), pages 536-585.
    9. Somayeh Koohborfardhaghighi & Jörn Altmann, 2015. "A Network Formation Model for Social Object Networks," Springer Books, in: Zhenji Zhang & Zuojun Max Shen & Juliang Zhang & Runtong Zhang (ed.), Liss 2014, edition 127, pages 615-625, Springer.
    10. Jackson, Matthew O. & Zenou, Yves, 2015. "Games on Networks," Handbook of Game Theory with Economic Applications,, Elsevier.
    11. Boris van Leeuwen & Theo Offerman & Arthur Schram, 2020. "Competition for Status Creates Superstars: an Experiment on Public Good Provision and Network Formation," Journal of the European Economic Association, European Economic Association, vol. 18(2), pages 666-707.
    12. Vigier, A., 2008. "Globalization, Education, and the Topology of Social Networks," Cambridge Working Papers in Economics 0851, Faculty of Economics, University of Cambridge.
    13. Andrea Galeotti & Luca Paolo Merlino, 2014. "Endogenous Job Contact Networks," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55(4), pages 1201-1226, November.
    14. Bargigli, Leonardo & Tedeschi, Gabriele, 2014. "Interaction in agent-based economics: A survey on the network approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 1-15.
    15. Friederike Mengel, 2009. "Conformism and cooperation in a local interaction model," Journal of Evolutionary Economics, Springer, vol. 19(3), pages 397-415, June.
    16. , D. & Tessone, Claudio J. & ,, 2014. "Nestedness in networks: A theoretical model and some applications," Theoretical Economics, Econometric Society, vol. 9(3), September.
    17. Matthew O. Jackson & Brian W. Rogers, 2005. "Search in the Formation of Large Networks: How Random are Socially Generated Networks?," Game Theory and Information 0503005, University Library of Munich, Germany.
    18. Xiaolong Zheng & Daniel Zeng & Fei-Yue Wang, 2015. "Social balance in signed networks," Information Systems Frontiers, Springer, vol. 17(5), pages 1077-1095, October.
    19. Hagenbach, Jeanne, 2011. "Centralizing information in networks," Games and Economic Behavior, Elsevier, vol. 72(1), pages 149-162, May.
    20. , David, 2016. "The formation of networks with local spillovers and limited observability," Theoretical Economics, Econometric Society, vol. 11(3), September.

    More about this item

    Keywords

    Network Properties; Network Growth Models; Small World Theory; Network Science; Simulation; Clustering Coefficient; Complex Networks.;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:snv:dp2009:2014114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jorn Altmann (email available below). General contact details of provider: https://edirc.repec.org/data/tesnukr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.