IDEAS home Printed from https://ideas.repec.org/p/sfi/sfiwpa/500059.html
   My bibliography  Save this paper

On a multi-timescale statistical feedback model for volatility fluctuations

Author

Listed:
  • Lisa Borland

    (Evnine-Vaughan Associates, Inc.)

  • Jean-Philippe Bouchaud

    (Science & Finance, Capital Fund Management
    CEA Saclay;)

Abstract

We study, both analytically and numerically, an ARCH-like, multiscale model of volatility, which assumes that the volatility is governed by the observed past price changes on different time scales. With a power-law distribution of time horizons, we obtain a model that captures most stylized facts of financial time series: Student-like distribution of returns with a power-law tail, long-memory of the volatility, slow convergence of the distribution of returns towards the Gaussian distribution, multifractality and anomalous volatility relaxation after shocks. At variance with recent multifractal models that are strictly time reversal invariant, the model also reproduces the time assymmetry of financial time series: past large scale volatility influence future small scale volatility. In order to quantitatively reproduce all empirical observations, the parameters must be chosen such that our model is close to an instability, meaning that (a) the feedback effect is important and substantially increases the volatility, and (b) that the model is intrinsically difficult to calibrate because of the very long range nature of the correlations. By imposing the consistency of the model predictions with a large set of different empirical observations, a reasonable range of the parameters value can be determined. The model can easily be generalized to account for jumps, skewness and multiasset correlations.

Suggested Citation

  • Lisa Borland & Jean-Philippe Bouchaud, 2005. "On a multi-timescale statistical feedback model for volatility fluctuations," Science & Finance (CFM) working paper archive 500059, Science & Finance, Capital Fund Management.
  • Handle: RePEc:sfi:sfiwpa:500059
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Adrian Dragulescu & Victor Yakovenko, 2002. "Probability distribution of returns in the Heston model with stochastic volatility," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 443-453.
    2. C. Chiarella & X-Z. He, 2001. "Asset price and wealth dynamics under heterogeneous expectations," Quantitative Finance, Taylor & Francis Journals, vol. 1(5), pages 509-526.
    3. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    4. C. H. Hommes, 2001. "Financial markets as nonlinear adaptive evolutionary systems," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 149-167.
    5. Laurent Calvet & Adlai Fisher, 2002. "Multifractality In Asset Returns: Theory And Evidence," The Review of Economics and Statistics, MIT Press, vol. 84(3), pages 381-406, August.
    6. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    7. Calvet, Laurent & Fisher, Adlai, 2001. "Forecasting multifractal volatility," Journal of Econometrics, Elsevier, vol. 105(1), pages 27-58, November.
    8. Benoit Pochard & Jean-Philippe Bouchaud, 2002. "The skewed multifractal random walk with applications to option smiles," Science & Finance (CFM) working paper archive 0204047, Science & Finance, Capital Fund Management.
    9. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    10. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    11. Josep Perello & Jaume Masoliver & Jean-Philippe Bouchaud, 2004. "Multiple time scales in volatility and leverage correlations: a stochastic volatility model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 11(1), pages 27-50.
    12. D. Challet & A. Chessa & M. Marsili & Y-C. Zhang, 2001. "From Minority Games to real markets," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 168-176.
    13. Fabrizio Lillo & Rosario N. Mantegna, 2001. "Power law relaxation in a complex system: Omori law after a financial market crash," Papers cond-mat/0111257, arXiv.org, revised Jun 2003.
    14. Lisa Borland, 2002. "A theory of non-Gaussian option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 415-431.
    15. L. Borland & J. P. Bouchaud, 2004. "A Non-Gaussian Option Pricing Model with Skew," Papers cond-mat/0403022, arXiv.org, revised Mar 2004.
    16. Longin, Francois M, 1996. "The Asymptotic Distribution of Extreme Stock Market Returns," The Journal of Business, University of Chicago Press, vol. 69(3), pages 383-408, July.
    17. Benoit Pochart & Jean-Philippe Bouchaud, 2002. "The skewed multifractal random walk with applications to option smiles," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 303-314.
    18. Lisa Borland & Jean-Philippe Bouchaud, 2004. "A non-Gaussian option pricing model with skew," Quantitative Finance, Taylor & Francis Journals, vol. 4(5), pages 499-514.
    19. Gençay, Ramazan & Dacorogna, Michel & Muller, Ulrich A. & Pictet, Olivier & Olsen, Richard, 2001. "An Introduction to High-Frequency Finance," Elsevier Monographs, Elsevier, edition 1, number 9780122796715.
    20. Gilles Zumbach, 2004. "Volatility processes and volatility forecast with long memory," Quantitative Finance, Taylor & Francis Journals, vol. 4(1), pages 70-86.
    21. repec:dau:papers:123456789/1392 is not listed on IDEAS
    22. Helyette Geman & P. Carr & D. Madan & M. Yor, 2003. "Stochastic Volatility for Levy Processes," Post-Print halshs-00144385, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zoltan Eisler & Janos Kertesz & Fabrizio Lillo & Rosario Mantegna, 2009. "Diffusive behavior and the modeling of characteristic times in limit order executions," Quantitative Finance, Taylor & Francis Journals, vol. 9(5), pages 547-563.

    More about this item

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sfi:sfiwpa:500059. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/scfinfr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.