IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

On a multi-timescale statistical feedback model for volatility fluctuations

  • Lisa Borland

    (Evnine-Vaughan Associates, Inc.)

  • Jean-Philippe Bouchaud

    (Science & Finance, Capital Fund Management
    CEA Saclay;)

Registered author(s):

    We study, both analytically and numerically, an ARCH-like, multiscale model of volatility, which assumes that the volatility is governed by the observed past price changes on different time scales. With a power-law distribution of time horizons, we obtain a model that captures most stylized facts of financial time series: Student-like distribution of returns with a power-law tail, long-memory of the volatility, slow convergence of the distribution of returns towards the Gaussian distribution, multifractality and anomalous volatility relaxation after shocks. At variance with recent multifractal models that are strictly time reversal invariant, the model also reproduces the time assymmetry of financial time series: past large scale volatility influence future small scale volatility. In order to quantitatively reproduce all empirical observations, the parameters must be chosen such that our model is close to an instability, meaning that (a) the feedback effect is important and substantially increases the volatility, and (b) that the model is intrinsically difficult to calibrate because of the very long range nature of the correlations. By imposing the consistency of the model predictions with a large set of different empirical observations, a reasonable range of the parameters value can be determined. The model can easily be generalized to account for jumps, skewness and multiasset correlations.

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below under "Related research" whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Paper provided by Science & Finance, Capital Fund Management in its series Science & Finance (CFM) working paper archive with number 500059.

    as
    in new window

    Length:
    Date of creation: Jul 2005
    Date of revision:
    Handle: RePEc:sfi:sfiwpa:500059
    Contact details of provider: Postal: 6 boulevard Haussmann, 75009 Paris, FRANCE
    Phone: +33.1.4949.5949
    Fax: +33.1.4770.1740
    Web page: http://www.science-finance.fr/
    Email:


    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Xue-Zhong (Tony) He & Carl Chiarella, 2001. "Asset Price and Wealth Dynamics under Heterogeneous Expectations," CeNDEF Workshop Papers, January 2001 5A.2, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    2. Laurent Calvet & Adlai Fisher, 2002. "Multifractality In Asset Returns: Theory And Evidence," The Review of Economics and Statistics, MIT Press, vol. 84(3), pages 381-406, August.
    3. Benoit Pochard & Jean-Philippe Bouchaud, 2002. "The skewed multifractal random walk with applications to option smiles," Science & Finance (CFM) working paper archive 0204047, Science & Finance, Capital Fund Management.
    4. A. Dragulescu & V. M. Yakovenko, 2002. "Probability distribution of returns in the Heston model with stochastic volatility," Computing in Economics and Finance 2002 127, Society for Computational Economics.
    5. Geman, Hélyette & Carr, Peter & Madan, Dilip B. & Yor, Marc, 2003. "Stochastic Volatility for Levy Processes," Economics Papers from University Paris Dauphine 123456789/1392, Paris Dauphine University.
    6. D. Challet & A. Chessa & M. Marsili & Y. -C. Zhang, 2000. "From Minority Games to real markets," Papers cond-mat/0011042, arXiv.org.
    7. Longin, Francois M, 1996. "The Asymptotic Distribution of Extreme Stock Market Returns," The Journal of Business, University of Chicago Press, vol. 69(3), pages 383-408, July.
    8. Adrian A. Dragulescu & Victor M. Yakovenko, 2002. "Probability distribution of returns in the Heston model with stochastic volatility," Papers cond-mat/0203046, arXiv.org, revised Nov 2002.
    9. L. Borland & J. P. Bouchaud, 2004. "A Non-Gaussian Option Pricing Model with Skew," Papers cond-mat/0403022, arXiv.org, revised Mar 2004.
    10. Fabrizio Lillo & Rosario N. Mantegna, 2001. "Power law relaxation in a complex system: Omori law after a financial market crash," Papers cond-mat/0111257, arXiv.org, revised Jun 2003.
    11. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    12. Lisa Borland & Jean-Philippe Bouchaud, 2004. "A non-Gaussian option pricing model with skew," Quantitative Finance, Taylor & Francis Journals, vol. 4(5), pages 499-514.
    13. Laurent Calvet & Adlai Fisher, 1999. "Forecasting Multifractal Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-017, New York University, Leonard N. Stern School of Business-.
    14. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    15. Josep Perello & Jaume Masoliver & Jean-Philippe Bouchaud, 2003. "Multiple time scales in volatility and leverage correlation: A stochastic volatility model," Science & Finance (CFM) working paper archive 50001, Science & Finance, Capital Fund Management.
    16. Adrian Dragulescu & Victor Yakovenko, 2002. "Probability distribution of returns in the Heston model with stochastic volatility," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 443-453.
    17. Gilles Zumbach, 2004. "Volatility processes and volatility forecast with long memory," Quantitative Finance, Taylor & Francis Journals, vol. 4(1), pages 70-86.
    18. Andrew W. Lo, 1989. "Long-term Memory in Stock Market Prices," NBER Working Papers 2984, National Bureau of Economic Research, Inc.
    19. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-43.
    20. Benoit Pochart & Jean-Philippe Bouchaud, 2002. "The skewed multifractal random walk with applications to option smiles," Quantitative Finance, Taylor & Francis Journals, vol. 2(4), pages 303-314.
    21. C. H. Hommes, 2001. "Financial markets as nonlinear adaptive evolutionary systems," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 149-167.
    22. Cars H. Hommes, 2001. "Financial Markets as Nonlinear Adaptive Evolutionary Systems," Tinbergen Institute Discussion Papers 01-014/1, Tinbergen Institute.
    23. Lisa Borland, 2002. "A theory of non-Gaussian option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 415-431.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:sfi:sfiwpa:500059. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marc Potters)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.