IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i7p1681-1693.html
   My bibliography  Save this article

Autocorrelation type, timescale and statistical property in financial time series

Author

Listed:
  • Yang, Honglin
  • Wan, Hong
  • Zha, Yong

Abstract

Earlier studies have documented that three types of autocorrelations exist in financial time series: sign, volatility, and return autocorrelation. In this paper, we examine how each type of the above autocorrelations affects the statistical properties of financial time series and its role in maintaining such statistical properties. Using three different shuffling series that correspondingly destroy each type of autocorrelation upon different timescales, we find that: (1) the statistical properties of the shuffling series significantly vary from the original ones; (2) volatility and return autocorrelations show greater impacts than sign autocorrelation; (3) the effects on the statistical properties are intensified as time scale expands; (4) the nonlinear component of autocorrelation is the major drive of the effect.

Suggested Citation

  • Yang, Honglin & Wan, Hong & Zha, Yong, 2013. "Autocorrelation type, timescale and statistical property in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(7), pages 1681-1693.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:7:p:1681-1693
    DOI: 10.1016/j.physa.2012.12.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112010813
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    2. Bacry, Emmanuel & Kozhemyak, Alexey & Muzy, Jean-François, 2006. "Are asset return tail estimations related to volatility long-range correlations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 119-126.
    3. Yanhui Liu & Parameswaran Gopikrishnan & Pierre Cizeau & Martin Meyer & Chung-Kang Peng & H. Eugene Stanley, 1999. "The statistical properties of the volatility of price fluctuations," Papers cond-mat/9903369, arXiv.org, revised Mar 1999.
    4. Kaushik Matia & Yosef Ashkenazy & H. Eugene Stanley, 2003. "Multifractal Properties of Price Fluctuations of Stocks and Commodities," Papers cond-mat/0308012, arXiv.org.
    5. Yanhui Liu & Pierre Cizeau & Martin Meyer & Chung-Kang Peng & H. Eugene Stanley, 1997. "Correlations in Economic Time Series," Papers cond-mat/9706021, arXiv.org.
    6. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    7. Josep Perello & Jaume Masoliver & Jean-Philippe Bouchaud, 2004. "Multiple time scales in volatility and leverage correlations: a stochastic volatility model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 11(1), pages 27-50.
    8. Gleria, Iram & Figueiredo, Annibal & Matsushita, Raul & Rathie, Pushpa & Da Silva, Sergio, 2004. "Exponentially damped Lévy flights, multiscaling and slow convergence in stockmarkets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(1), pages 200-206.
    9. Gopikrishnan, P & Plerou, V & Liu, Y & Amaral, L.A.N & Gabaix, X & Stanley, H.E, 2000. "Scaling and correlation in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 362-373.
    10. Figueiredo, Annibal & Gleria, Iram & Matsushita, Raul & Da Silva, Sergio, 2004. "Lévy flights, autocorrelation, and slow convergence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(3), pages 369-383.
    11. Qiu, Tian & Chen, Guang & Zhong, Li-Xin & Lei, Xiao-Wei, 2011. "Memory effect and multifractality of cross-correlations in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(5), pages 828-836.
    12. Viswanathan, G.M. & Fulco, U.L. & Lyra, M.L. & Serva, M., 2003. "The origin of fat-tailed distributions in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 329(1), pages 273-280.
    13. Parameswaran Gopikrishnan & Vasiliki Plerou & Luis A. Nunes Amaral & Martin Meyer & H. Eugene Stanley, 1999. "Scaling of the distribution of fluctuations of financial market indices," Papers cond-mat/9905305, arXiv.org.
    14. B. Podobnik & D. F. Fu & H. E. Stanley & P. Ch. Ivanov, 2007. "Power-law autocorrelated stochastic processes with long-range cross-correlations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 56(1), pages 47-52, March.
    15. Bertram, William K., 2008. "Measuring time dependent volatility and cross-sectional correlation in Australian equity returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3183-3191.
    16. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    17. Gençay, Ramazan & Dacorogna, Michel & Muller, Ulrich A. & Pictet, Olivier & Olsen, Richard, 2001. "An Introduction to High-Frequency Finance," Elsevier Monographs, Elsevier, edition 1, number 9780122796715.
    18. Liu, Yanhui & Cizeau, Pierre & Meyer, Martin & Peng, C.-K. & Eugene Stanley, H., 1997. "Correlations in economic time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 245(3), pages 437-440.
    19. Michael C. Munnix & Rudi Schafer & Thomas Guhr, 2010. "Impact of the tick-size on financial returns and correlations," Papers 1001.5124, arXiv.org, revised Jul 2010.
    20. Johnson, Neil F. & Jefferies, Paul & Hui, Pak Ming, 2003. "Financial Market Complexity," OUP Catalogue, Oxford University Press, number 9780198526650.
    21. Münnix, Michael C. & Schäfer, Rudi & Guhr, Thomas, 2010. "Impact of the tick-size on financial returns and correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4828-4843.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:7:p:1681-1693. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.