IDEAS home Printed from https://ideas.repec.org/p/sek/iefpro/10913067.html
   My bibliography  Save this paper

Evaluation of financial health of companies through data envelopment analysis: Selection of variables for the DEA model in R

Author

Listed:
  • Emil Exenberger

    (Technical University of Ko?ice)

  • Michaela Kav?áková

    (Technical University of Ko?ice)

Abstract

Existing companies need to continually adapt to changing market conditions. The market situation may change, say, from day to day, as in 2008, when the Great Depression broke out, or as is currently the case during the COVID-19 pandemic. For this reason, companies need to monitor their financial health and be able to cope with such unpredictable situations. The aim of this paper is to provide a detailed guide to selecting appropriate financial indicators for the Data Envelopment Analysis model that can be used to evaluate the financial health of companies. Specifically, we use the Mann-Whitney test for indicators of IT companies in Slovakia during 2012-2017. The result is a process of selecting variables to evaluate the financial health of companies through the DEA model, applicable to both business practice and academia.

Suggested Citation

  • Emil Exenberger & Michaela Kav?áková, 2020. "Evaluation of financial health of companies through data envelopment analysis: Selection of variables for the DEA model in R," Proceedings of Economics and Finance Conferences 10913067, International Institute of Social and Economic Sciences.
  • Handle: RePEc:sek:iefpro:10913067
    as

    Download full text from publisher

    File URL: https://iises.net/proceedings/13th-economics-finance-conference-prague/table-of-content/detail?cid=109&iid=004&rid=13067
    File Function: First version, 2020
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Almamy, Jeehan & Aston, John & Ngwa, Leonard N., 2016. "An evaluation of Altman's Z-score using cash flow ratio to predict corporate failure amid the recent financial crisis: Evidence from the UK," Journal of Corporate Finance, Elsevier, vol. 36(C), pages 278-285.
    2. Deakin, Eb, 1972. "Discriminant Analysis Of Predictors Of Business Failure," Journal of Accounting Research, Wiley Blackwell, vol. 10(1), pages 167-179.
    3. J. Vrbka & Z. Rowland, 2019. "Assessing the Financial Health of Companies Engaged in Mining and Extraction Using Methods of Complex Evaluation of Enterprises," Contributions to Economics, in: Svetlana Ashmarina & Marek Vochozka (ed.), Sustainable Growth and Development of Economic Systems, pages 321-333, Springer.
    4. Ihyaul Ulum & Rizqiyah & Ahmad Waluya Jati, 2016. "Intellectual Capital Performance: A Comparative Study between Financial and Non-Financial Industry of Indonesian Biggest Companies," International Journal of Economics and Financial Issues, Econjournals, vol. 6(4), pages 1436-1439.
    5. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    6. G. N. Wilkinson & C. E. Rogers, 1973. "Symbolic Description of Factorial Models for Analysis of Variance," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 22(3), pages 392-399, November.
    7. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    8. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    9. Zmijewski, Me, 1984. "Methodological Issues Related To The Estimation Of Financial Distress Prediction Models," Journal of Accounting Research, Wiley Blackwell, vol. 22, pages 59-82.
    10. Sueyoshi, Toshiyuki & Goto, Mika, 2011. "DEA approach for unified efficiency measurement: Assessment of Japanese fossil fuel power generation," Energy Economics, Elsevier, vol. 33(2), pages 292-303, March.
    11. Anna Feruś, 2010. "The Application of DEA Method in Evaluating Credit Risk of Companies," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 4(4), December.
    12. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
    13. Joseph Paradi & Mette Asmild & Paul Simak, 2004. "Using DEA and Worst Practice DEA in Credit Risk Evaluation," Journal of Productivity Analysis, Springer, vol. 21(2), pages 153-165, March.
    14. Grice, John Stephen & Ingram, Robert W., 2001. "Tests of the generalizability of Altman's bankruptcy prediction model," Journal of Business Research, Elsevier, vol. 54(1), pages 53-61, October.
    15. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    16. Li, Qi & Maasoumi, Esfandiar & Racine, Jeffrey S., 2009. "A nonparametric test for equality of distributions with mixed categorical and continuous data," Journal of Econometrics, Elsevier, vol. 148(2), pages 186-200, February.
    17. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    2. Sumaira Ashraf & Elisabete G. S. Félix & Zélia Serrasqueiro, 2019. "Do Traditional Financial Distress Prediction Models Predict the Early Warning Signs of Financial Distress?," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    3. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    4. Ashraf, Sumaira & Félix, Elisabete G.S. & Serrasqueiro, Zélia, 2020. "Development and testing of an augmented distress prediction model: A comparative study on a developed and an emerging market," Journal of Multinational Financial Management, Elsevier, vol. 57.
    5. Nawaf Almaskati & Ron Bird & Yue Lu & Danny Leung, 2019. "The Role of Corporate Governance and Estimation Methods in Predicting Bankruptcy," Working Papers in Economics 19/16, University of Waikato.
    6. Bhanu Pratap Singh & Alok Kumar Mishra, 2016. "Re-estimation and comparisons of alternative accounting based bankruptcy prediction models for Indian companies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-28, December.
    7. George Giannopoulos & Sophia Ali Sardar & Rebecca Salti & Nicos Sykianakis, 2022. "Analyzing Insolvency Prediction Models in the Period Before and After the Financial Crisis: A Case Study on the Example of US Firms," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 12(3), pages 23-45.
    8. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    9. Mousavi, Mohammad M. & Ouenniche, Jamal & Xu, Bing, 2015. "Performance evaluation of bankruptcy prediction models: An orientation-free super-efficiency DEA-based framework," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 64-75.
    10. Amin Jan & Maran Marimuthu & Muhammad Kashif Shad & Haseeb ur-Rehman & Muhammad Zahid & Ahmad Ali Jan, 2019. "Bankruptcy profile of the Islamic and conventional banks in Malaysia: a post-crisis period analysis," Economic Change and Restructuring, Springer, vol. 52(1), pages 67-87, February.
    11. Sanjay Sehgal & Ritesh Kumar Mishra & Ajay Jaisawal, 2021. "A search for macroeconomic determinants of corporate financial distress," Indian Economic Review, Springer, vol. 56(2), pages 435-461, December.
    12. Soo Young Kim, 2018. "Predicting hospitality financial distress with ensemble models: the case of US hotels, restaurants, and amusement and recreation," Service Business, Springer;Pan-Pacific Business Association, vol. 12(3), pages 483-503, September.
    13. Sepulveda Velasquez, Jorge, 2021. "Bibliometric Review of Research in Financial Health," MPRA Paper 111353, University Library of Munich, Germany.
    14. Kevin C.W. Chen & Chi†Wen Jevons Lee, 1993. "Financial Ratios and Corporate Endurance: A Case of the Oil and Gas Industry," Contemporary Accounting Research, John Wiley & Sons, vol. 9(2), pages 667-694, March.
    15. Róbert Štefko & Jarmila Horváthová & Martina Mokrišová, 2020. "Bankruptcy Prediction with the Use of Data Envelopment Analysis: An Empirical Study of Slovak Businesses," JRFM, MDPI, vol. 13(9), pages 1-15, September.
    16. Khoja, Layla & Chipulu, Maxwell & Jayasekera, Ranadeva, 2019. "Analysis of financial distress cross countries: Using macroeconomic, industrial indicators and accounting data," International Review of Financial Analysis, Elsevier, vol. 66(C).
    17. Manzaneque, Montserrat & Priego, Alba María & Merino, Elena, 2016. "Corporate governance effect on financial distress likelihood: Evidence from Spain," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 19(1), pages 111-121.
    18. Psillaki, Maria & Tsolas, Ioannis E. & Margaritis, Dimitris, 2010. "Evaluation of credit risk based on firm performance," European Journal of Operational Research, Elsevier, vol. 201(3), pages 873-881, March.
    19. Ben Jabeur, Sami, 2017. "Bankruptcy prediction using Partial Least Squares Logistic Regression," Journal of Retailing and Consumer Services, Elsevier, vol. 36(C), pages 197-202.
    20. Katarina Valaskova & Dominika Gajdosikova & Jaroslav Belas, 2023. "Bankruptcy prediction in the post-pandemic period: A case study of Visegrad Group countries," Oeconomia Copernicana, Institute of Economic Research, vol. 14(1), pages 253-293, March.

    More about this item

    Keywords

    Data Envelopment Analysis; Mann-Whitney test; financial health; multicolinearity; financial indicators;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C88 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other Computer Software
    • M21 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Economics - - - Business Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sek:iefpro:10913067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klara Cermakova (email available below). General contact details of provider: https://iises.net/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.