IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Estimation of Spatial Panel-Data Models Using a Minimum-Distance Estimator

Listed author(s):
  • Theophile Azomahou


    (University Louis Pasteur)

Registered author(s):

    Spatial autocorrelation (more generally, spatial dependence) occurs when a regression's error term at one location is correlated with that at another location. Ignoring the resulting non-diagonal disturbance covariance matrix results in misspecification and bias. While most studies focus on cross-sectional specifications, spatial panel data models have not received much attention. Here I consider modelling and estimating panel-data autoregressive spatial processes and show that minimum distance methods provide consistent estimates. I begin with a mixed regressive spatial autoregressive model and define a class of random fields with models derived from processes indexed with space, time, and cross-sectional dimensions. I use a row-standardized contiguity matrix, i.e., the spatial weight matrix is normalized so the rows sum to unity. This standardization produces a spatially dependent lagged variable that represents a vector of average values from neighbouring dependent observations. The specification is assumed to be the true data generating process relating sample data collected with reference to points in space and time. By relying on existing methods, we estimate the model in two stages. First, assuming the errors to be normally distributed, the cross-section parameters can be efficiently estimated by the concentrated maximum likelihood. Under suitable regularity conditions, this provides both the unrestricted consistent estimates (including the spatial coefficient) and some elements of scores, which are used to compute the consistent asymptotic covariance matrix for the second stage. Then, two cases are considered: the fixed parameters case and the time-varying one. The minimum distance estimator for each case is derived by stacking the estimates from the first stage into a block vector on which linear moment restrictions are imposed. Then, in the second stage, we minimize the norm of the inverse of the block asymptotic covariance matrix. The resulting minimum-distance estimator is asymptotically consistent. The restrictions imposed are to be tested. This process is used to examine the spatial aspects of the joint residential water and electricity demand in the French department of "Moselle". The data are a lattice sample of 115 neighbouring communities that represent a balanced panel of 1380 observations. Initial results indicate that this approach is feasible and, although it seems straightforward to perform, it relies on computationally demanding procedures. To the best of my knowledge, this process is novel in its application to spatial processes for panel data.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: main text
    Download Restriction: no

    Paper provided by Society for Computational Economics in its series Computing in Economics and Finance 1999 with number 1322.

    in new window

    Date of creation: 01 Mar 1999
    Handle: RePEc:sce:scecf9:1322
    Contact details of provider: Postal:
    CEF99, Boston College, Department of Economics, Chestnut Hill MA 02467 USA

    Fax: +1-617-552-2308
    Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Lars Gårn Hansen, 1996. "Water and Energy Price Impacts on Residential Water Demand in Copenhagen," Land Economics, University of Wisconsin Press, vol. 72(1), pages 66-79.
    2. John C. Driscoll & Aart C. Kraay, 1998. "Consistent Covariance Matrix Estimation With Spatially Dependent Panel Data," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 549-560, November.
    3. Case, Anne C, 1991. "Spatial Patterns in Household Demand," Econometrica, Econometric Society, vol. 59(4), pages 953-965, July.
    4. Kodde, D A & Palm, Franz C & Pfann, G A, 1990. "Asymptotic Least-Squares Estimation Efficiency Considerations and Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(3), pages 229-243, July-Sept.
    5. Dowd, Michael R. & LeSage, James P., 1997. "Analysis of spatial contiguity influences on state price level formation," International Journal of Forecasting, Elsevier, vol. 13(2), pages 245-253, June.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:sce:scecf9:1322. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.