IDEAS home Printed from https://ideas.repec.org/p/sce/scecf5/150.html
   My bibliography  Save this paper

A SNCP Method for Solving Equilibrium Problems with Equilibrium Constraints

Author

Listed:
  • Che-Lin Su

Abstract

This paper studies algorithms for equilibrium problems with equilibrium constraints (EPECs). We present a generalization of Scholtes’s regularization scheme for MPECs and extend his convergence results to this new relaxation method. We propose a sequential nonlinear complementarity (SNCP) algorithm to solve EPECs and establish the convergence of this algorithm. We present numerical results comparing the SNCP algorithm and diagonalization (nonlinear Gauss- Seidel and nonlinear Jacobi) methods on randomly generated EPEC test problems. The computational experience to date shows that both the SNCP algorithm and the nonlinear Gauss-Seidel method outperform the nonlinear Jacobi method

Suggested Citation

  • Che-Lin Su, 2005. "A SNCP Method for Solving Equilibrium Problems with Equilibrium Constraints," Computing in Economics and Finance 2005 150, Society for Computational Economics.
  • Handle: RePEc:sce:scecf5:150
    as

    Download full text from publisher

    File URL: http://www.stanford.edu/~clsu/epec-algo.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Berry, Carolyn A. & Hobbs, Benjamin F. & Meroney, William A. & O'Neill, Richard P. & StewartJr, William R., 1999. "Understanding how market power can arise in network competition: a game theoretic approach," Utilities Policy, Elsevier, vol. 8(3), pages 139-158, September.
    2. Blaise Allaz & Jean-Luc Vila, 1993. "Cournot Competition, Forward Markets and Efficiency," Post-Print hal-00511806, HAL.
    3. Holger Scheel & Stefan Scholtes, 2000. "Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity," Mathematics of Operations Research, INFORMS, vol. 25(1), pages 1-22, February.
    4. Cardell, Judith B. & Hitt, Carrie Cullen & Hogan, William W., 1997. "Market power and strategic interaction in electricity networks," Resource and Energy Economics, Elsevier, vol. 19(1-2), pages 109-137, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Uday V. Shanbhag & Gerd Infanger & Peter W. Glynn, 2011. "A Complementarity Framework for Forward Contracting Under Uncertainty," Operations Research, INFORMS, vol. 59(4), pages 810-834, August.
    2. J. S. Pang, 2007. "Partially B-Regular Optimization and Equilibrium Problems," Mathematics of Operations Research, INFORMS, vol. 32(3), pages 687-699, August.
    3. Fernández, Mauricio & Muñoz, Francisco D. & Moreno, Rodrigo, 2020. "Analysis of imperfect competition in natural gas supply contracts for electric power generation: A closed-loop approach," Energy Economics, Elsevier, vol. 87(C).
    4. Feijoo, Felipe & Das, Tapas K., 2014. "Design of Pareto optimal CO2 cap-and-trade policies for deregulated electricity networks," Applied Energy, Elsevier, vol. 119(C), pages 371-383.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Ehrenmann & Karsten Neuhoff, 2009. "A Comparison of Electricity Market Designs in Networks," Operations Research, INFORMS, vol. 57(2), pages 274-286, April.
    2. Xinmin Hu & Daniel Ralph, 2007. "Using EPECs to Model Bilevel Games in Restructured Electricity Markets with Locational Prices," Operations Research, INFORMS, vol. 55(5), pages 809-827, October.
    3. Benjamin F. Hobbs & Fieke A.M. Rijkers & Maroeska G. Boots, 2005. "The More Cooperation, The More Competition? A Cournot Analysis of the Benefits of Electric Market Coupling," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 69-98.
    4. Yao, Jian & Oren, Shmuel S. & Adler, Ilan, 2007. "Two-settlement electricity markets with price caps and Cournot generation firms," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1279-1296, September.
    5. Cristian Zambrano & Yris Olaya, 2017. "An agent-based simulation approach to congestion management for the Colombian electricity market," Annals of Operations Research, Springer, vol. 258(2), pages 217-236, November.
    6. E. Anderson & A. Philpott & H. Xu, 2007. "Modelling the effects of interconnection between electricity markets subject to uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(1), pages 1-26, February.
    7. Hu, X. & Ralph, R., 2006. "Using EPECs to model bilevel games in restructured electricity markets with locational prices," Cambridge Working Papers in Economics 0619, Faculty of Economics, University of Cambridge.
    8. Bjørndal, Mette & Gribkovskaia, Victoria & Jörnsten, Kurt, 2014. "Market Power in a Power Market with Transmission Constraints," Discussion Papers 2014/29, Norwegian School of Economics, Department of Business and Management Science.
    9. Karsten Neuhoff, 2003. "Integrating Transmission and Energy Markets Mitigates Market Power," Working Papers EP17, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    10. Sertaç Oruç & Scott Cunningham, 2014. "Transmission Rights to the Electrical Transmission Grid in the Post Liberalization Era," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 5(4), pages 686-705, December.
    11. Tanaka, Makoto, 2009. "Transmission-constrained oligopoly in the Japanese electricity market," Energy Economics, Elsevier, vol. 31(5), pages 690-701, September.
    12. Muñoz, M.A. & Pineda, S. & Morales, J.M., 2022. "A bilevel framework for decision-making under uncertainty with contextual information," Omega, Elsevier, vol. 108(C).
    13. Jian Yao & Ilan Adler & Shmuel S. Oren, 2008. "Modeling and Computing Two-Settlement Oligopolistic Equilibrium in a Congested Electricity Network," Operations Research, INFORMS, vol. 56(1), pages 34-47, February.
    14. Rajnish Kamat & Shmuel Oren, 2004. "Two-settlement Systems for Electricity Markets under Network Uncertainty and Market Power," Journal of Regulatory Economics, Springer, vol. 25(1), pages 5-37, January.
    15. Meredith Fowlie, 2008. "Incomplete Environmental Regulation, Imperfect Competition, and Emissions Leakage," NBER Working Papers 14421, National Bureau of Economic Research, Inc.
    16. Xinmin Hu & Daniel Ralph & Eric K. Ralph & Peter Bardsley & Michael C. Ferris, 2004. "Electricity Generation with Looped Transmission Networks: Bidding to an ISO," Working Papers EP65, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    17. SMEERS, Yves, 2005. "How well can one measure market power in restructured electricity systems ?," LIDAM Discussion Papers CORE 2005050, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    18. Paul Twomey & Richard Green & Karsten Neuhoff & David Newbery, 2005. "A Review of the Monitoring of Market Power: The Possible Roles of TSOs in Monitoring for Market Power Issues in Congested Transmission Systems," Working Papers 0502, Massachusetts Institute of Technology, Center for Energy and Environmental Policy Research.
    19. Tarufelli, Brittany L., 2021. "Strategic Behavior and Market Design in Regional Climate Policy," SocArXiv x96ge, Center for Open Science.
    20. Fernández, Mauricio & Muñoz, Francisco D. & Moreno, Rodrigo, 2020. "Analysis of imperfect competition in natural gas supply contracts for electric power generation: A closed-loop approach," Energy Economics, Elsevier, vol. 87(C).

    More about this item

    Keywords

    ;
    ;
    ;

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf5:150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.