IDEAS home Printed from https://ideas.repec.org/p/sce/scecf5/150.html
   My bibliography  Save this paper

A SNCP Method for Solving Equilibrium Problems with Equilibrium Constraints

Author

Listed:
  • Che-Lin Su

Abstract

This paper studies algorithms for equilibrium problems with equilibrium constraints (EPECs). We present a generalization of Scholtes’s regularization scheme for MPECs and extend his convergence results to this new relaxation method. We propose a sequential nonlinear complementarity (SNCP) algorithm to solve EPECs and establish the convergence of this algorithm. We present numerical results comparing the SNCP algorithm and diagonalization (nonlinear Gauss- Seidel and nonlinear Jacobi) methods on randomly generated EPEC test problems. The computational experience to date shows that both the SNCP algorithm and the nonlinear Gauss-Seidel method outperform the nonlinear Jacobi method

Suggested Citation

  • Che-Lin Su, 2005. "A SNCP Method for Solving Equilibrium Problems with Equilibrium Constraints," Computing in Economics and Finance 2005 150, Society for Computational Economics.
  • Handle: RePEc:sce:scecf5:150
    as

    Download full text from publisher

    File URL: http://www.stanford.edu/~clsu/epec-algo.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Berry, Carolyn A. & Hobbs, Benjamin F. & Meroney, William A. & O'Neill, Richard P. & StewartJr, William R., 1999. "Understanding how market power can arise in network competition: a game theoretic approach," Utilities Policy, Elsevier, vol. 8(3), pages 139-158, September.
    2. Blaise Allaz & Jean-Luc Vila, 1993. "Cournot Competition, Forward Markets and Efficiency," Post-Print hal-00511806, HAL.
    3. Holger Scheel & Stefan Scholtes, 2000. "Mathematical Programs with Complementarity Constraints: Stationarity, Optimality, and Sensitivity," Mathematics of Operations Research, INFORMS, vol. 25(1), pages 1-22, February.
    4. Cardell, Judith B. & Hitt, Carrie Cullen & Hogan, William W., 1997. "Market power and strategic interaction in electricity networks," Resource and Energy Economics, Elsevier, vol. 19(1-2), pages 109-137, March.
    5. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Uday V. Shanbhag & Gerd Infanger & Peter W. Glynn, 2011. "A Complementarity Framework for Forward Contracting Under Uncertainty," Operations Research, INFORMS, vol. 59(4), pages 810-834, August.
    2. Feijoo, Felipe & Das, Tapas K., 2014. "Design of Pareto optimal CO2 cap-and-trade policies for deregulated electricity networks," Applied Energy, Elsevier, vol. 119(C), pages 371-383.
    3. J. S. Pang, 2007. "Partially B-Regular Optimization and Equilibrium Problems," Mathematics of Operations Research, INFORMS, vol. 32(3), pages 687-699, August.
    4. Fernández, Mauricio & Muñoz, Francisco D. & Moreno, Rodrigo, 2020. "Analysis of imperfect competition in natural gas supply contracts for electric power generation: A closed-loop approach," Energy Economics, Elsevier, vol. 87(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Ehrenmann & Karsten Neuhoff, 2009. "A Comparison of Electricity Market Designs in Networks," Operations Research, INFORMS, vol. 57(2), pages 274-286, April.
    2. Hesamzadeh, M.R. & Biggar, D.R. & Bunn, D.W. & Moiseeva, E., 2020. "The impact of generator market power on the electricity hedge market," Energy Economics, Elsevier, vol. 86(C).
    3. Xinmin Hu & Daniel Ralph, 2007. "Using EPECs to Model Bilevel Games in Restructured Electricity Markets with Locational Prices," Operations Research, INFORMS, vol. 55(5), pages 809-827, October.
    4. Benjamin F. Hobbs & Fieke A.M. Rijkers & Maroeska G. Boots, 2005. "The More Cooperation, The More Competition? A Cournot Analysis of the Benefits of Electric Market Coupling," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 69-98.
    5. Ferreira, José Luis & Kujal, Praveen & Rassenti, Stephen, 2009. "The strategic motive to sell forward: experimental evidence," UC3M Working papers. Economics we092616, Universidad Carlos III de Madrid. Departamento de Economía.
    6. Holmberg, Pär & Willems, Bert, 2015. "Relaxing competition through speculation: Committing to a negative supply slope," Journal of Economic Theory, Elsevier, vol. 159(PA), pages 236-266.
    7. Yao, Jian & Oren, Shmuel S. & Adler, Ilan, 2007. "Two-settlement electricity markets with price caps and Cournot generation firms," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1279-1296, September.
    8. van Koten, Silvester & Ortmann, Andreas, 2013. "Structural versus behavioral remedies in the deregulation of electricity markets: An experimental investigation motivated by policy concerns," European Economic Review, Elsevier, vol. 64(C), pages 256-265.
    9. Kfir Eliaz & Ran Spiegler, 2007. "A Mechanism-Design Approach to Speculative Trade," Econometrica, Econometric Society, vol. 75(3), pages 875-884, May.
    10. Cristian Zambrano & Yris Olaya, 2017. "An agent-based simulation approach to congestion management for the Colombian electricity market," Annals of Operations Research, Springer, vol. 258(2), pages 217-236, November.
    11. David Newbery, 2008. "Predicting market power in wholesale electricity markets," Working Papers EPRG 0821, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    12. E. Anderson & A. Philpott & H. Xu, 2007. "Modelling the effects of interconnection between electricity markets subject to uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(1), pages 1-26, February.
    13. Machiel Mulder & Gijsbert Zwart, 2006. "Government involvement in liberalised gas markets; a welfare-economic analysis of Dutch gas-depletion policy," CPB Document 110.rdf, CPB Netherlands Bureau for Economic Policy Analysis.
    14. Roques, F.A. & Savva , N.S., 2006. "Price Cap Regulation and Investment Incentives under Demand Uncertainty," Cambridge Working Papers in Economics 0636, Faculty of Economics, University of Cambridge.
    15. Machiel Mulder & Gijsbert Zwart, 2006. "Government involvement in liberalised gas markets; a welfare-economic analysis of Dutch gas-depletion policy," CPB Document 110, CPB Netherlands Bureau for Economic Policy Analysis.
    16. Robert Wilson, 2008. "Supply Function Equilibrium in a Constrained Transmission System," Operations Research, INFORMS, vol. 56(2), pages 369-382, April.
    17. Hu, X. & Ralph, R., 2006. "Using EPECs to model bilevel games in restructured electricity markets with locational prices," Cambridge Working Papers in Economics 0619, Faculty of Economics, University of Cambridge.
    18. Holmberg, Pär & Newbery, David, 2010. "The supply function equilibrium and its policy implications for wholesale electricity auctions," Utilities Policy, Elsevier, vol. 18(4), pages 209-226, December.
    19. Zhuang, Jifang & Gabriel, Steven A., 2008. "A complementarity model for solving stochastic natural gas market equilibria," Energy Economics, Elsevier, vol. 30(1), pages 113-147, January.
    20. Kfir Eliaz & Ran Spiegler, 2008. "Optimal speculative trade among large traders," Review of Economic Design, Springer;Society for Economic Design, vol. 12(1), pages 45-74, April.

    More about this item

    Keywords

    Multi-leader Multi-follower games; equilibrium problems; nonlinear complementarity problems;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf5:150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.