IDEAS home Printed from https://ideas.repec.org/p/sce/scecf5/14.html
   My bibliography  Save this paper

Accurate Yield Curve Scenarios Generation using Functional Gradient Descent

Author

Listed:
  • Fabio Trojani
  • Francesco Audrino

Abstract

We propose a multivariate nonparametric technique for generating reliable historical yield curve scenarios and confidence intervals. The approach is based on a Functional Gradient Descent (FGD) estimation of the conditional mean vector and volatility matrix of a multivariate interest rate series. It is computationally feasible in large dimensions and it can account for non-linearities in the dependence of interest rates at all available maturities. Based on FGD we apply filtered historical simulation to compute reliable out-of-sample yield curve scenarios and confidence intervals. We back-test our methodology on daily USD bond data for forecasting horizons from 1 to 10 days. Based on several statistical performance measures we find significant evidence of a higher predictive power of our method when compared to scenarios generating techniques based on (i) factor analysis, (ii) a multivariate CCC-GARCH model, or (iii) an exponential smoothing volatility estimators as in the RiskMetrics approach

Suggested Citation

  • Fabio Trojani & Francesco Audrino, 2005. "Accurate Yield Curve Scenarios Generation using Functional Gradient Descent," Computing in Economics and Finance 2005 14, Society for Computational Economics.
  • Handle: RePEc:sce:scecf5:14
    as

    Download full text from publisher

    File URL: http://repec.org/sce2005/up.21584.1103185889.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diebold, Francis X & Nerlove, Marc, 1989. "The Dynamics of Exchange Rate Volatility: A Multivariate Latent Factor Arch Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 4(1), pages 1-21, Jan.-Mar..
    2. Kiefer, Nicholas M, 1988. "Economic Duration Data and Hazard Functions," Journal of Economic Literature, American Economic Association, vol. 26(2), pages 646-679, June.
    3. Buhlmann P. & Yu B., 2003. "Boosting With the L2 Loss: Regression and Classification," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 324-339, January.
    4. Farshid Jamshidian & Yu Zhu, 1996. "Scenario Simulation: Theory and methodology (*)," Finance and Stochastics, Springer, vol. 1(1), pages 43-67.
    5. Peter Christoffersen, 2004. "Backtesting Value-at-Risk: A Duration-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 84-108.
    6. Engle, Robert F & Sheppard, Kevin K, 2001. "Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH," University of California at San Diego, Economics Working Paper Series qt5s2218dp, Department of Economics, UC San Diego.
    7. Francesco Audrino & Giovanni Barone-Adesi, 2005. "A multivariate FGD technique to improve VaR computation in equity markets," Computational Management Science, Springer, vol. 2(2), pages 87-106, March.
    8. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    9. Gourieroux,Christian, 2000. "Econometrics of Qualitative Dependent Variables," Cambridge Books, Cambridge University Press, number 9780521589857.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabio Trojani, 2007. "Accurate Short-Term Yield Curve Forecasting using Functional Gradient Descent," Journal of Financial Econometrics, Oxford University Press, vol. 5(4), pages 591-623, Fall.
    2. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    3. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    4. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
    5. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    6. Pelletier, Denis, 2006. "Regime switching for dynamic correlations," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 445-473.
    7. Kin-Yip Ho & Albert K Tsui, 2008. "Volatility Dynamics in Foreign Exchange Rates : Further Evidence from the Malaysian Ringgit and Singapore Dollar," Finance Working Papers 22571, East Asian Bureau of Economic Research.
    8. Mark, Joy, 2011. "Gold and the US dollar: Hedge or haven?," Finance Research Letters, Elsevier, vol. 8(3), pages 120-131, September.
    9. Asai, Manabu & Caporin, Massimiliano & McAleer, Michael, 2015. "Forecasting Value-at-Risk using block structure multivariate stochastic volatility models," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 40-50.
    10. Christodoulakis, George A., 2007. "Common volatility and correlation clustering in asset returns," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1263-1284, November.
    11. Gourieroux, C. & Jasiak, J. & Sufana, R., 2009. "The Wishart Autoregressive process of multivariate stochastic volatility," Journal of Econometrics, Elsevier, vol. 150(2), pages 167-181, June.
    12. Elena-Ivona Dumitrescu & Christophe Hurlin & Vinson Pham, 2012. "Backtesting Value-at-Risk: From Dynamic Quantile to Dynamic Binary Tests," Finance, Presses universitaires de Grenoble, vol. 33(1), pages 79-112.
    13. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    14. Christian Gourieroux, 2005. "Wishart Autoregressive Model for Stochastic Risk," Working Papers 2005-43, Center for Research in Economics and Statistics.
    15. Karoll Gómez Portilla & Santiago Gallón Gómez, 2007. "Distribución condicional de los retornos de la tasa de cambio colombiana: un ejercicio empírico a partir de modelos GARCH multivariados," Revista de Economía del Rosario, Universidad del Rosario, December.
    16. Audrino, Francesco & Barone-Adesi, Giovanni, 2005. "Functional gradient descent for financial time series with an application to the measurement of market risk," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 959-977, April.
    17. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2006. "Analysis of high dimensional multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 134(2), pages 341-371, October.
    18. Berens, Tobias & Weiß, Gregor N.F. & Wied, Dominik, 2015. "Testing for structural breaks in correlations: Does it improve Value-at-Risk forecasting?," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 135-152.
    19. M. Hashem Pesaran & Paolo Zaffaroni, 2004. "Model Averaging and Value-at-Risk Based Evaluation of Large Multi Asset Volatility Models for Risk Management," CESifo Working Paper Series 1358, CESifo.
    20. Bubák, Vít & Kocenda, Evzen & Zikes, Filip, 2011. "Volatility transmission in emerging European foreign exchange markets," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2829-2841, November.

    More about this item

    Keywords

    Conditional mean and volatility estimation; Filtered Historical Simulation; Functional Gradient Descent; Term structure; Multivariate CCC-GARCH models;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf5:14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.