IDEAS home Printed from https://ideas.repec.org/p/sce/scecf0/80.html
   My bibliography  Save this paper

Modelling Expectations With Genefer- An Artificial Intelligence Approach

Author

Listed:
  • Stefan Kooths

    (Westfaelische Wilhelms-Universitaet Muenster)

  • Eric Ringhut

    (University of Muenster)

Abstract

Economic modelling of financial markets means to model highly complex systems in which expectations can be the dominant driving forces. Therefore it is necessary to focus on how agents form their expectations. We believe that they look for patterns, hypothesize, try, make mistakes, learn and adapt. AgentsÆ bounded rationality leads us to a rule-based approach which we model using Fuzzy Rule-Bases. E. g. if a single agent believes the exchange rate is determined by a set of possible inputs and is asked to put their relationship in words his answer will probably reveal a fuzzy nature like: "IF the inflation rate in the EURO-Zone is low and the GDP growth rate is larger than in the US THEN the EURO will rise against the USD". æLowÆ and ælargerÆ are fuzzy terms which give a gradual linguistic meaning to crisp intervalls in the respective universes of discourse. In order to learn a Fuzzy Fuzzy Rule base from examples we introduce Genetic Algorithms and Artificial Neural Networks as learning operators. These examples can either be empirical data or originate from an economic simulation model. The software GENEFER (GEnetic NEural Fuzzy ExplorER) has been developed for designing such a Fuzzy Rule Base. The design process is modular and comprises Input Identification, Fuzzification, Rule-Base Generating and Rule-Base Tuning. The two latter steps make use of genetic and neural learning algorithms for optimizing the Fuzzy Rule-Base.

Suggested Citation

  • Stefan Kooths & Eric Ringhut, 2000. "Modelling Expectations With Genefer- An Artificial Intelligence Approach," Computing in Economics and Finance 2000 80, Society for Computational Economics.
  • Handle: RePEc:sce:scecf0:80
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/cef00/papers/paper80.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Richard B. Olsen & Michel M. Dacorogna & Ulrich A. Muller, & Olivier V. Pictet, "undated". "Going Back to the Basics - Rethinking Market Efficiency," Working Papers 1992-09-07., Olsen and Associates.
    2. Arthur, W.B. & Holland, J.H. & LeBaron, B. & Palmer, R. & Tayler, P., 1996. "Asset Pricing Under Endogenous Expectations in an Artificial Stock Market," Working papers 9625, Wisconsin Madison - Social Systems.
    3. J. Doyne Farmer, 1999. "Physicists Attempt to Scale the Ivory Towers of Finance," Working Papers 99-10-073, Santa Fe Institute.
    4. Arthur, W Brian, 1994. "Inductive Reasoning and Bounded Rationality," American Economic Review, American Economic Association, vol. 84(2), pages 406-411, May.
    5. McFadden, Daniel, 1999. "Rationality for Economists?," Journal of Risk and Uncertainty, Springer, vol. 19(1-3), pages 73-105, December.
    6. Beltrametti, Luca & Fiorentini, Riccardo & Marengo, Luigi & Tamborini, Roberto, 1997. "A learning-to-forecast experiment on the foreign exchange market with a classifier system," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1543-1575, June.
    7. Marengo, Luigi & Tordjman, Helene, 1996. "Speculation, Heterogeneity and Learning: A Simulation Model of Exchange Rates Dynamics," Kyklos, Wiley Blackwell, vol. 49(3), pages 407-438.
    8. Vriend, Nicolaas J., 2000. "An illustration of the essential difference between individual and social learning, and its consequences for computational analyses," Journal of Economic Dynamics and Control, Elsevier, vol. 24(1), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Floortje Alkemade & Han Poutré & Hans Amman, 2006. "Robust Evolutionary Algorithm Design for Socio-economic Simulation," Computational Economics, Springer;Society for Computational Economics, vol. 28(4), pages 355-370, November.
    2. Shu-Heng Chen & Chung-Ching Tai, 2006. "On the Selection of Adaptive Algorithms in ABM: A Computational-Equivalence Approach," Computational Economics, Springer;Society for Computational Economics, vol. 28(1), pages 51-69, August.
    3. Shu-Heng Chen & Chung-Ching Tai, 2006. "Republication: On the Selection of Adaptive Algorithms in ABM: A Computational-Equivalence Approach," Computational Economics, Springer;Society for Computational Economics, vol. 28(4), pages 313-331, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf0:80. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/sceeeea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.