IDEAS home Printed from
   My bibliography  Save this paper

Bootstrap Based Bias Correction for Homogeneous Dynamic²² Panels




  • L. POZZI



The within or least squares dummy variable estimator is severely biased in homogeneous dynamic panel models with moderate T. We present a bias correction for this estimator based on an iterative bootstrap procedure. Monte Carlo simulations show that this procedure is a good alternative for the analytical correction by Kiviet (1995, JE). The bootstrap (i) improves on the analytical correction when the variance of the individual effects increases, (ii) is straightforward to extend to less restrictive settings and (iii) allows for a correction of the longrun coefficient that is independent of the correction of the short-run coefficients.

Suggested Citation

  • G. Everaert & L. Pozzi, 2004. "Bootstrap Based Bias Correction for Homogeneous Dynamic²² Panels," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/263, Ghent University, Faculty of Economics and Business Administration.
  • Handle: RePEc:rug:rugwps:04/263

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    2. Pesaran, H. & Smith, R. & Im, K.S., 1995. "Dynamic Linear Models for Heterogeneous Panels," Cambridge Working Papers in Economics 9503, Faculty of Economics, University of Cambridge.
    3. Altonji, Joseph G & Segal, Lewis M, 1996. "Small-Sample Bias in GMM Estimation of Covariance Structures," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 353-366, July.
    4. Richard Blundell & Stephen Bond & Frank Windmeijer, 2000. "Estimation in dynamic panel data models: improving on the performance of the standard GMM estimator," IFS Working Papers W00/12, Institute for Fiscal Studies.
    5. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    6. Nelson, Charles R & Startz, Richard, 1990. "The Distribution of the Instrumental Variables Estimator and Its t-Ratio When the Instrument Is a Poor One," The Journal of Business, University of Chicago Press, vol. 63(1), pages 125-140, January.
    7. Kiviet, Jan F., 1995. "On bias, inconsistency, and efficiency of various estimators in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 68(1), pages 53-78, July.
    8. Maurice J. G. Bun, 2003. "Bias Correction in the Dynamic Panel Data Model with a Nonscalar Disturbance Covariance Matrix," Econometric Reviews, Taylor & Francis Journals, vol. 22(1), pages 29-58, February.
    9. Nickell, Stephen J, 1981. "Biases in Dynamic Models with Fixed Effects," Econometrica, Econometric Society, vol. 49(6), pages 1417-1426, November.
    10. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," Review of Economic Studies, Oxford University Press, vol. 58(2), pages 277-297.
    11. Judson, Ruth A. & Owen, Ann L., 1999. "Estimating dynamic panel data models: a guide for macroeconomists," Economics Letters, Elsevier, vol. 65(1), pages 9-15, October.
    12. Badi H. Baltagi & Chihwa Kao, 2000. "Nonstationary Panels, Cointegration in Panels and Dynamic Panels: A Survey," Center for Policy Research Working Papers 16, Center for Policy Research, Maxwell School, Syracuse University.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Moses muse Sichei & Chris Harmse & Frans Kanfer, 2007. "Determinants Of South Africa-Us Intra-Industry Trade In Services: A Wild Bootstrap Dynamic Panel Data Analysis," South African Journal of Economics, Economic Society of South Africa, vol. 75(3), pages 521-539, September.

    More about this item


    Bias correction; within estimator; dynamic panel; GMM estimator; Monte Carlo simulation; Bootstrap;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rug:rugwps:04/263. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nathalie Verhaeghe). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.