IDEAS home Printed from https://ideas.repec.org/p/rim/rimwps/03_10.html
   My bibliography  Save this paper

Modeling U.S. Inflation Dynamics: A Bayesian Nonparametric Approach

Author

Listed:
  • Markus Jochmann

    () (Department of Economics, University of Strathclyde)

Abstract

This paper uses an infinite hidden Markov model (IHMM) to analyze U.S. inflation dynamics with a particular focus on the persistence of inflation. The IHMM is a Bayesian nonparametric approach to modeling structural breaks. It allows for an unknown number of breakpoints and is a flexible and attractive alternative to existing methods. We found a clear structural break during the recent financial crisis. Prior to that, inflation persistence was high and fairly constant.

Suggested Citation

  • Markus Jochmann, 2010. "Modeling U.S. Inflation Dynamics: A Bayesian Nonparametric Approach," Working Paper series 03_10, Rimini Centre for Economic Analysis.
  • Handle: RePEc:rim:rimwps:03_10
    as

    Download full text from publisher

    File URL: http://www.rcea.org/RePEc/pdf/wp03_10.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Teh, Yee Whye & Jordan, Michael I. & Beal, Matthew J. & Blei, David M., 2006. "Hierarchical Dirichlet Processes," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1566-1581, December.
    2. Giordani, Paolo & Kohn, Robert & van Dijk, Dick, 2007. "A unified approach to nonlinearity, structural change, and outliers," Journal of Econometrics, Elsevier, vol. 137(1), pages 112-133, March.
    3. Nelson, Charles R & Schwert, G William, 1977. "Short-Term Interest Rates as Predictors of Inflation: On Testing the Hypothesis That the Real Rate of Interest is Constant," American Economic Review, American Economic Association, vol. 67(3), pages 478-486, June.
    4. Ang, Andrew & Bekaert, Geert, 2002. "Regime Switches in Interest Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 163-182, April.
    5. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
    6. Chib, Siddhartha, 1998. "Estimation and comparison of multiple change-point models," Journal of Econometrics, Elsevier, vol. 86(2), pages 221-241, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bauwens, Luc & Carpantier, Jean-François & Dufays, Arnaud, 2015. "Autoregressive moving average infinite hidden markov-switching models," CORE Discussion Papers 2015007, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Maheu, John M. & Yang, Qiao, 2016. "An infinite hidden Markov model for short-term interest rates," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 202-220.
    3. repec:eee:intfor:v:33:y:2017:i:4:p:1025-1043 is not listed on IDEAS
    4. Jin, Xin & Maheu, John M., 2016. "Bayesian semiparametric modeling of realized covariance matrices," Journal of Econometrics, Elsevier, vol. 192(1), pages 19-39.
    5. repec:taf:jnlbes:v:35:y:2017:i:2:p:162-182 is not listed on IDEAS
    6. Didier Nibbering & Richard Paap & Michel van der Wel, 2016. "A Bayesian Infinite Hidden Markov Vector Autoregressive Model," Tinbergen Institute Discussion Papers 16-107/III, Tinbergen Institute, revised 13 Oct 2017.
    7. Yong Song, 2014. "Modelling Regime Switching And Structural Breaks With An Infinite Hidden Markov Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 825-842, August.
    8. CARPANTIER, Jean-François & DUFAYS, Arnaud, 2014. "Specific Markov-switching behaviour for ARMA parameters," CORE Discussion Papers 2014014, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. repec:luc:wpaper:14-07 is not listed on IDEAS

    More about this item

    Keywords

    inflation dynamics; hierarchical Dirichlet process; IHMM; structural breaks; Bayesian nonparametrics;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rim:rimwps:03_10. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Marco Savioli). General contact details of provider: http://edirc.repec.org/data/rcfeait.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.