IDEAS home Printed from https://ideas.repec.org/p/rff/dpaper/dp-02-06-.html
   My bibliography  Save this paper

The Near-Term Impacts of Carbon Mitigation Policies on Manufacturing Industries

Author

Listed:
  • Morgenstern, Richard

    (Resources for the Future)

  • Shih, Jhih-Shyang

    (Resources for the Future)

  • Ho, Mun

    (Resources for the Future)

  • Zhang, Xuehua

Abstract

Who will pay for new policies to reduce carbon dioxide and other greenhouse gas emissions in the United States? This paper considers a slice of the question by examining the near-term impact on domestic manufacturing industries of both upstream (economy-wide) and downstream (electric power industry only) carbon mitigation policies. Detailed Census data on the electricity use of four-digit manufacturing industries is combined with input-output information on interindustry purchases to paint a detailed picture of carbon use, including effects on final demand. This approach, which freezes capital and other inputs at current levels and assumes that all costs are passed forward, yields upper-bound estimates of total costs. The results are best viewed as descriptive of the relative burdens within the manufacturing sector rather than as a measure of absolute costs. Overall, the principal conclusion is that within the manufacturing sector (which by definition excludes coal production and electricity generation), only a small number of industries would bear a disproportionate short-term burden of a carbon tax or similar policy. Not surprisingly, an electricity-only policy affects very different manufacturing industries than an economy-wide carbon tax.

Suggested Citation

  • Morgenstern, Richard & Shih, Jhih-Shyang & Ho, Mun & Zhang, Xuehua, 2002. "The Near-Term Impacts of Carbon Mitigation Policies on Manufacturing Industries," RFF Working Paper Series dp-02-06-, Resources for the Future.
  • Handle: RePEc:rff:dpaper:dp-02-06-
    as

    Download full text from publisher

    File URL: http://www.rff.org/RFF/documents/RFF-DP-02-06.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jorgenson, Dale W. & Wilcoxen, Peter J., 1993. "Reducing U.S. carbon dioxide emissions: an assessment of different instruments," Journal of Policy Modeling, Elsevier, vol. 15(5-6), pages 491-520.
    2. Richard D. Morgenstern & William A. Pizer & Jhih-Shyang Shih, 2001. "The Cost Of Environmental Protection," The Review of Economics and Statistics, MIT Press, vol. 83(4), pages 732-738, November.
    3. Koomey, Jonathan G. & Webber, Carrie A. & Atkinson, Celina S. & Nicholls, Andrew, 2001. "Addressing energy-related challenges for the US buildings sector: results from the clean energy futures study," Energy Policy, Elsevier, vol. 29(14), pages 1209-1221, November.
    4. Sanstad, Alan H. & DeCanio, Stephen J. & Boyd, Gale A. & Koomey, Jonathan G., 2001. "Estimating bounds on the economy-wide effects of the CEF policy scenarios," Energy Policy, Elsevier, vol. 29(14), pages 1299-1311, November.
    5. Burtraw, Dallas & Palmer, Karen L. & Bharvirkar, Ranjit & Paul, Anthony, 2001. "The Effect of Allowance Allocation on the Cost of Carbon Emission Trading," Discussion Papers 10536, Resources for the Future.
    6. Wayne B Gray & Ronald J Shadbegian, 1994. "Pollution Abatement Costs, Regulation And Plant-Level Productivity," Working Papers 94-14, Center for Economic Studies, U.S. Census Bureau.
    7. Ruth, Matthias & Davidsdottir, Brynhildur & Laitner, Skip, 2000. "Impacts of market-based climate change policies on the US pulp and paper industry," Energy Policy, Elsevier, vol. 28(4), pages 259-270, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wilkerson, Jordan T. & Cullenward, Danny & Davidian, Danielle & Weyant, John P., 2013. "End use technology choice in the National Energy Modeling System (NEMS): An analysis of the residential and commercial building sectors," Energy Economics, Elsevier, vol. 40(C), pages 773-784.
    2. Wayne B. Gray, 2015. "Environmental regulations and business decisions," IZA World of Labor, Institute of Labor Economics (IZA), pages 187-187, September.
    3. Morgenstern, Richard D. & Pizer, William A. & Shih, Jhih-Shyang, 2002. "Jobs Versus the Environment: An Industry-Level Perspective," Journal of Environmental Economics and Management, Elsevier, vol. 43(3), pages 412-436, May.
    4. Brown, Marilyn A. & Levine, Mark D. & Short, Walter & Koomey, Jonathan G., 2001. "Scenarios for a clean energy future," Energy Policy, Elsevier, vol. 29(14), pages 1179-1196, November.
    5. Liu, Jingjing & Zhao, Min & Wang, Yanbo, 2020. "Impacts of government subsidies and environmental regulations on green process innovation: A nonlinear approach," Technology in Society, Elsevier, vol. 63(C).
    6. Liu, Beibei & He, Pan & Zhang, Bing & Bi, Jun, 2012. "Impacts of alternative allowance allocation methods under a cap-and-trade program in power sector," Energy Policy, Elsevier, vol. 47(C), pages 405-415.
    7. Sterner, Thomas & Muller, Adrian, 2006. "Output and Abatement Effects of Allocation Readjustment in Permit Trade," RFF Working Paper Series dp-06-49, Resources for the Future.
    8. Stavins, Robert & Jaffe, Adam & Newell, Richard, 2000. "Technological Change and the Environment," Working Paper Series rwp00-002, Harvard University, John F. Kennedy School of Government.
    9. Ian W.H. Parry, 2005. "Fiscal Interactions and the Costs of Controlling Pollution from Electricity," RAND Journal of Economics, The RAND Corporation, vol. 36(4), pages 849-869, Winter.
    10. Winston Harrington & Richard D. Morgenstern & Peter Nelson, 2000. "On the accuracy of regulatory cost estimates," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 19(2), pages 297-322.
    11. Zhang, Yijun & Li, Xiaoping & Song, Yi & Jiang, Feitao, 2021. "Can green industrial policy improve total factor productivity? Firm-level evidence from China," Structural Change and Economic Dynamics, Elsevier, vol. 59(C), pages 51-62.
    12. Gerlagh, Reyer & Dellink, Rob & Hofkes, Marjan & Verbruggen, Harmen, 2002. "A measure of sustainable national income for the Netherlands," Ecological Economics, Elsevier, vol. 41(1), pages 157-174, April.
    13. Bode, Sven, 2006. "Multi-period emissions trading in the electricity sector--winners and losers," Energy Policy, Elsevier, vol. 34(6), pages 680-691, April.
    14. Tang, Ling & Wu, Jiaqian & Yu, Lean & Bao, Qin, 2017. "Carbon allowance auction design of China's emissions trading scheme: A multi-agent-based approach," Energy Policy, Elsevier, vol. 102(C), pages 30-40.
    15. Monteagudo, Josefina & Rojas, Laura & Stabilito, Augusto & Watanuki, Masakazu, 2004. "The New Challenges of the Regional Trade Agenda for the Andean Countries," Conference papers 331234, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    16. Newell, Richard G. & Jaffe, Adam B. & Stavins, Robert N., 2006. "The effects of economic and policy incentives on carbon mitigation technologies," Energy Economics, Elsevier, vol. 28(5-6), pages 563-578, November.
    17. Kverndokk, Snorre & Rose, Adam, 2008. "Equity and Justice in Global Warming Policy," International Review of Environmental and Resource Economics, now publishers, vol. 2(2), pages 135-176, October.
    18. Palmer, Karen & Burtraw, Dallas & Paul, Anthony, 2009. "Allowance Allocation in a CO2 Emissions Cap-and-Trade Program for the Electricity Sector in California," RFF Working Paper Series dp-09-41, Resources for the Future.
    19. William M. Shobe & Dallas Burtraw, 2012. "Rethinking Environmental Federalism In A Warming World," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 1-33.
    20. Glomm, Gerhard & Kawaguchi, Daiji & Sepulveda, Facundo, 2008. "Green taxes and double dividends in a dynamic economy," Journal of Policy Modeling, Elsevier, vol. 30(1), pages 19-32.

    More about this item

    Keywords

    distribution of carbon mitigation costs; industrial impacts of carbon policies;

    JEL classification:

    • Q28 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Government Policy
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rff:dpaper:dp-02-06-. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Resources for the Future (email available below). General contact details of provider: https://edirc.repec.org/data/rffffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.