IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Testing the Profitability of Technical Analysis as a Portfolio Selection Strategy

  • Vlad Pavlov

    ()

    (QUT)

  • Stan Hurn

    ()

    (QUT)

One of the main diffculties in evaluating the profits obtained using technical analysis is that trading rules are often specifed rather vaguely by practitioners and depend upon the judicious choice of rule parameters. In this paper, popular moving-average (or cross-over) rules are applied to a cross-section of Australian stocks and the signals from the rules are used to form portfolios. The performance of the trading rules across the full range of possible parameter values is evaluated by means of an aggregate test that does not depend on the parameters of the rules. The results indicate that for a wide range of parameters moving-average rules generate contrarian profits (profits from the moving-average rules are negative). In bootstrap simulations the returns statistics are significant indicating that the moving-average rules pick up some form of systematic variation in returns that does not correlate with the standard risk factors.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.ncer.edu.au/papers/documents/WPNo52.pdf
Download Restriction: no

Paper provided by National Centre for Econometric Research in its series NCER Working Paper Series with number 52.

as
in new window

Length: 31
Date of creation: 09 Dec 2009
Date of revision:
Handle: RePEc:qut:auncer:2009_65
Contact details of provider: Phone: 07 3138 5066
Fax: 07 3138 1500
Web page: http://www.ncer.edu.au

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Gencay, Ramazan, 1998. "The predictability of security returns with simple technical trading rules," Journal of Empirical Finance, Elsevier, vol. 5(4), pages 347-359, October.
  2. Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Journal of Finance, American Finance Association, vol. 55(4), pages 1705-1770, 08.
  3. Hendrik Bessembinder & Kalok Chan, 1998. "Market Efficiency and the Returns to Technical Analysis," Financial Management, Financial Management Association, vol. 27(2), Summer.
  4. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. " Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
  5. C.L. Osler & P.H. Kevin Chang, 1995. "Head and shoulders: not just a flaky pattern," Staff Reports 4, Federal Reserve Bank of New York.
  6. A. S. Hurn & V.Pavlov, 2008. "Momentum in Australian Stock Returns: An Update," NCER Working Paper Series 23, National Centre for Econometric Research, revised 26 Feb 2008.
  7. Hudson, Robert & Dempsey, Michael & Keasey, Kevin, 1996. "A note on the weak form efficiency of capital markets: The application of simple technical trading rules to UK stock prices - 1935 to 1994," Journal of Banking & Finance, Elsevier, vol. 20(6), pages 1121-1132, July.
  8. Allen, Franklin & Karjalainen, Risto, 1999. "Using genetic algorithms to find technical trading rules," Journal of Financial Economics, Elsevier, vol. 51(2), pages 245-271, February.
  9. Conrad, Jennifer & Kaul, Gautam, 1998. "An Anatomy of Trading Strategies," Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 489-519.
  10. Brock, W. & Lakonishok, J. & Lebaron, B., 1991. "Simple Technical Trading Rules And The Stochastic Properties Of Stock Returns," Working papers 90-22, Wisconsin Madison - Social Systems.
  11. Blume, Lawrence & Easley, David & O'Hara, Maureen, 1994. " Market Statistics and Technical Analysis: The Role of Volume," Journal of Finance, American Finance Association, vol. 49(1), pages 153-81, March.
  12. Demir, Isabelle & Muthuswamy, Jay & Walter, Terry, 2004. "Momentum returns in Australian equities: The influences of size, risk, liquidity and return computation," Pacific-Basin Finance Journal, Elsevier, vol. 12(2), pages 143-158, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:qut:auncer:2009_65. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (School of Economics and Finance)

The email address of this maintainer does not seem to be valid anymore. Please ask School of Economics and Finance to update the entry or send us the correct address

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.