IDEAS home Printed from https://ideas.repec.org/p/qed/wpaper/1450.html
   My bibliography  Save this paper

Regularized Maximum Diversification Investment Strategy

Author

Listed:
  • N'Golo Kone

Abstract

The maximum diversification portfolio as defined by Choueifaty (2011) depends on the vector of asset volatilities and the inverse of the covariance matrix of the asset return. In practice, these two quantities need to be replaced by their sample statistics. The estimation error associated with the use of these sample statistics may be amplified due to (near) singularity of the covariance matrix, in financial markets with many assets. This in turn may lead to the selection of portfolios that are far from the optimal regarding standard portfolio performance measures of the financial market. To address this problem, we investigate three regularization techniques, including the ridge, the spectral cut-off, and the Landweber-Fridman approaches in order to stabilize the inverse of the covariance matrix. These regularization schemes involve a tuning parameter that needs to be chosen. In light of this fact, we propose a data-driven method for selecting the tuning parameter. We show that the selected portfolio by regularization is asymptotically efficient with respect to the diversification ratio. In empirical and Monte Carlo experiments, the resulting regularized rules are compared to several strategies, such as the most diversified portfolio, the target portfolio, the global minimum variance portfolio, and the naive 1/N strategy in terms of in-sample and out-of-sample Sharpe ratio performance, and it is shown that our method yields significant Sharpe ratio improvements.

Suggested Citation

  • N'Golo Kone, 2021. "Regularized Maximum Diversification Investment Strategy," Working Paper 1450, Economics Department, Queen's University.
  • Handle: RePEc:qed:wpaper:1450
    as

    Download full text from publisher

    File URL: https://www.econ.queensu.ca/sites/econ.queensu.ca/files/wpaper/qed_wp_1450.pdf
    File Function: First version 2021
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carrasco, Marine & Tchuente, Guy, 2015. "Regularized LIML for many instruments," Journal of Econometrics, Elsevier, vol. 186(2), pages 427-442.
    2. Carrasco, Marine, 2012. "A regularization approach to the many instruments problem," Journal of Econometrics, Elsevier, vol. 170(2), pages 383-398.
    3. Carrasco, Marine & Florens, Jean-Pierre, 2000. "Generalization Of Gmm To A Continuum Of Moment Conditions," Econometric Theory, Cambridge University Press, vol. 16(6), pages 797-834, December.
    4. Carrasco, Marine & Florens, Jean-Pierre & Renault, Eric, 2007. "Linear Inverse Problems in Structural Econometrics Estimation Based on Spectral Decomposition and Regularization," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 77, Elsevier.
    5. Jiaqin Chen & Ming Yuan, 2016. "Efficient Portfolio Selection in a Large Market," Journal of Financial Econometrics, Oxford University Press, vol. 14(3), pages 496-524.
    6. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    7. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    8. Alexander Kempf & Christoph Memmel, 2006. "Estimating the global Minimum Variance Portfolio," Schmalenbach Business Review (sbr), LMU Munich School of Management, vol. 58(4), pages 332-348, October.
    9. Frost, Peter A. & Savarino, James E., 1986. "An Empirical Bayes Approach to Efficient Portfolio Selection," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 293-305, September.
    10. Mengmeng Ao & Li Yingying & Xinghua Zheng, 2019. "Approaching Mean-Variance Efficiency for Large Portfolios," Review of Financial Studies, Society for Financial Studies, vol. 32(7), pages 2890-2919.
    11. Jobson, J D & Korkie, Bob M, 1981. "Performance Hypothesis Testing with the Sharpe and Treynor Measures," Journal of Finance, American Finance Association, vol. 36(4), pages 889-908, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N’Golo Koné, 2020. "Regularized Maximum Diversification Investment Strategy," Econometrics, MDPI, vol. 9(1), pages 1-23, December.
    2. N'Golo Kone, 2021. "Efficient mean-variance portfolio selection by double regularization," Working Paper 1453, Economics Department, Queen's University.
    3. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    4. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    5. Guy Tchuente, 2019. "Weak Identification and Estimation of Social Interaction Models," Papers 1902.06143, arXiv.org.
    6. Wolfgang Karl Hardle & Yegor Klochkov & Alla Petukhina & Nikita Zhivotovskiy, 2022. "Robustifying Markowitz," Papers 2212.13996, arXiv.org.
    7. Guy Tchuente, 2016. "Estimation of social interaction models using regularization," Studies in Economics 1607, School of Economics, University of Kent.
    8. Marine Carrasco & Guy Tchuente, 2016. "Regularization Based Anderson Rubin Tests for Many Instruments," Studies in Economics 1608, School of Economics, University of Kent.
    9. Härdle, Wolfgang & Klochkov, Yegor & Petukhina, Alla & Zhivotovskiy, Nikita, 2021. "Robustifying Markowitz," IRTG 1792 Discussion Papers 2021-018, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    10. Pierre Chausse, 2017. "Regularized Empirical Likelihood as a Solution to the No Moment," Working Papers 1708, University of Waterloo, Department of Economics, revised Nov 2017.
    11. Marine Carrasco & Guy Tchuente, 2016. "Efficient Estimation with Many Weak Instruments Using Regularization Techniques," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1609-1637, December.
    12. Carrasco, Marine & Kotchoni, Rachidi, 2017. "Efficient Estimation Using The Characteristic Function," Econometric Theory, Cambridge University Press, vol. 33(2), pages 479-526, April.
    13. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    14. Nandana Sengupta & Fallaw Sowell, 2020. "On the Asymptotic Distribution of Ridge Regression Estimators Using Training and Test Samples," Econometrics, MDPI, vol. 8(4), pages 1-25, October.
    15. Frahm, Gabriel & Memmel, Christoph, 2008. "Dominating estimators for the global minimum variance portfolio," Discussion Papers in Econometrics and Statistics 2/08, University of Cologne, Institute of Econometrics and Statistics.
    16. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    17. Rahul Singh & Liyuan Xu & Arthur Gretton, 2020. "Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves," Papers 2010.04855, arXiv.org, revised Oct 2022.
    18. Carrasco, Marine & Tchuente, Guy, 2015. "Regularized LIML for many instruments," Journal of Econometrics, Elsevier, vol. 186(2), pages 427-442.
    19. Erindi Allaj, 2020. "The Black–Litterman model and views from a reverse optimization procedure: an out-of-sample performance evaluation," Computational Management Science, Springer, vol. 17(3), pages 465-492, October.
    20. Kazak, Ekaterina & Pohlmeier, Winfried, 2019. "Testing out-of-sample portfolio performance," International Journal of Forecasting, Elsevier, vol. 35(2), pages 540-554.

    More about this item

    Keywords

    Portfolio selection; Maximum diversification; Regularization;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qed:wpaper:1450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mark Babcock (email available below). General contact details of provider: https://edirc.repec.org/data/qedquca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.