IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/99591.html

Boltzmann Entropy in Cryptocurrencies: A Statistical Ensemble Based Approach

Author

Listed:
  • Grilli, Luca
  • Santoro, Domenico

Abstract

In this paper we try to build a statistical ensemble to describe a cryptocurrency-based system, emphasizing an "affinity" between the system of agents trading in these currencies and statistical mechanics. We focus our study on the concept of entropy in the sense of Boltzmann and we try to extend such a definition to a model in which the particles are replaced by N agents completely described by their ability to buy and to sell a certain quantity of cryptocurrencies. After providing some numerical examples, we show that entropy can be used as an indicator to forecast the price trend of cryptocurrencies.

Suggested Citation

  • Grilli, Luca & Santoro, Domenico, 2020. "Boltzmann Entropy in Cryptocurrencies: A Statistical Ensemble Based Approach," MPRA Paper 99591, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:99591
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/99591/1/MPRA_paper_99591.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Campbell, John & Shiller, Robert, 1988. "Stock Prices, Earnings, and Expected Dividends," Scholarly Articles 3224293, Harvard University Department of Economics.
    2. A. Dionisio & R. Menezes & D. A. Mendes, 2006. "An econophysics approach to analyse uncertainty in financial markets: an application to the Portuguese stock market," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 50(1), pages 161-164, March.
    3. Les Gulko, 1999. "The Entropy Theory Of Stock Option Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 331-355.
    4. Fama, Eugene F. & French, Kenneth R., 1988. "Dividend yields and expected stock returns," Journal of Financial Economics, Elsevier, vol. 22(1), pages 3-25, October.
    5. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    6. McCauley, Joseph l., 2004. "Thermodynamic analogies in economics and finance: instability of markets," MPRA Paper 2159, University Library of Munich, Germany.
    7. Laffont, Jean-Jacques & Ossard, Herve & Vuong, Quang, 1995. "Econometrics of First-Price Auctions," Econometrica, Econometric Society, vol. 63(4), pages 953-980, July.
    8. repec:bla:jfinan:v:43:y:1988:i:3:p:661-76 is not listed on IDEAS
    9. Mihály Ormos & Dávid Zibriczky, 2014. "Entropy-Based Financial Asset Pricing," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-21, December.
    10. Ulrich Kirchner & Caroline Zunckel, 2011. "Measuring Portfolio Diversification," Papers 1102.4722, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grilli, Luca & Santoro, Domenico, 2020. "Dualism in Bitcoin Dynamics: existence of an Upper Bound in Poincaré Recurrence Theorem for Deterministic vs Stochastic Behavior," MPRA Paper 101057, University Library of Munich, Germany.
    2. Grilli, Luca & Santoro, Domenico, 2020. "How Boltzmann Entropy Improves Prediction with LSTM," MPRA Paper 100578, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carmich[ae]l, Benoit & Samson, Lucie, 2005. "Consumption growth as a risk factor? Evidence from Canadian financial markets," Journal of International Money and Finance, Elsevier, vol. 24(1), pages 83-101, February.
    2. Hjalmarsson, Erik, 2008. "Interpreting long-horizon estimates in predictive regressions," Finance Research Letters, Elsevier, vol. 5(2), pages 104-117, June.
    3. Agiakloglou, Christos & Gkouvakis, Michail, 2015. "Causal interrelations among market fundamentals: Evidence from the European Telecommunications sector," The Quarterly Review of Economics and Finance, Elsevier, vol. 55(C), pages 150-159.
    4. Jinjarak, Yothin, 2014. "Equity prices and financial globalization," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 49-57.
    5. Chiang, Thomas C., 2019. "Empirical analysis of intertemporal relations between downside risks and expected returns—Evidence from Asian markets," Research in International Business and Finance, Elsevier, vol. 47(C), pages 264-278.
    6. Bollerslev, Tim & Gibson, Michael & Zhou, Hao, 2011. "Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities," Journal of Econometrics, Elsevier, vol. 160(1), pages 235-245, January.
    7. Semenov, Andrei, 2021. "Measuring the stock's factor beta and identifying risk factors under market inefficiency," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 635-649.
    8. Sy, Oumar & Zaman, Ashraf Al, 2020. "Is the presidential premium spurious?," Journal of Empirical Finance, Elsevier, vol. 56(C), pages 94-104.
    9. John Y. Campbell, 2008. "Viewpoint: Estimating the equity premium," Canadian Journal of Economics, Canadian Economics Association, vol. 41(1), pages 1-21, February.
    10. Angelo Aspris & Ester Félez‐Viñas & Sean Foley & Hamish Malloch & Jiri Svec, 2024. "The market risk premium in Australia: Forward‐looking evidence from the options market," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 64(4), pages 3951-3972, December.
    11. David Haab & Thomas Nitschka, 2017. "Predicting returns on asset markets of a small, open economy and the influence of global risks," Working Papers 2017-14, Swiss National Bank.
    12. Roy Kouwenberg & Roelof Salomons & Pipat Thontirawong, 2014. "Corporate governance and stock returns in Asia," Quantitative Finance, Taylor & Francis Journals, vol. 14(6), pages 965-976, June.
    13. Chen, Yong & Da, Zhi & Huang, Dayong, 2022. "Short selling efficiency," Journal of Financial Economics, Elsevier, vol. 145(2), pages 387-408.
    14. Ron Bird & Lorenzo Casavecchia, 2011. "Conditional style rotation model on enhanced value and growth portfolios: The European experience," Journal of Asset Management, Palgrave Macmillan, vol. 11(6), pages 375-390, February.
    15. Jorgensen, Bjorn & Li, Jing & Sadka, Gil, 2012. "Earnings dispersion and aggregate stock returns," Journal of Accounting and Economics, Elsevier, vol. 53(1), pages 1-20.
    16. Campbell, John Y., 2001. "Why long horizons? A study of power against persistent alternatives," Journal of Empirical Finance, Elsevier, vol. 8(5), pages 459-491, December.
    17. Paulo M.M. Rodrigues & Antonio Rubia, 2011. "A Class of Robust Tests in Augmented Predictive Regressions," Working Papers w201126, Banco de Portugal, Economics and Research Department.
    18. Mark E. Wohar & David E. Rapach, 2005. "Valuation ratios and long-horizon stock price predictability," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 327-344.
    19. Andries, Marianne & Bianchi, Milo & Huynh, Karen & Pouget, Sebastien, 2024. "Return Predictability, Expectations, and Investment: Experimental Evidence," CEPR Discussion Papers 19239, C.E.P.R. Discussion Papers.
    20. Tien Foo Sing & Kim Hiang Liow & Wei‐Jin Chan, 2002. "Mean reversion of Singapore property stock prices towards their fundamental values," Journal of Property Investment & Finance, Emerald Group Publishing Limited, vol. 20(4), pages 374-387, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C69 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Other
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
    • E47 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Forecasting and Simulation: Models and Applications
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G19 - Financial Economics - - General Financial Markets - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:99591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.