IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/80262.html

A Study on Maize Production in Samastipur (Bihar): An Empirical Analysis

Author

Listed:
  • Kumar, Amalendu
  • Singh, K.M.

Abstract

Maize is an important cereal crop in the world. It has several important uses for industrial purposes, human food and animal feed. It is grown under variety of agro-ecological conditions and posses highest yield potential above 80 quintal per hectare among the food grain crop. The demand of maize is growing globally due to multiple uses and need to increase production continuously. This crop has tremendous potential for increase in productivity, profitability and sustainability in agriculture. But the drawback is that it is cultivated mostly under stress condition. In this backdrop the present study has plan to access the maize production and utilization system in Samastipur district of Bihar with objectives of maize production system prevails in the area, opportunities for utilization of maize and constraints thereon is the main focus of the paper. The study is based on primary data collected through 120 different categories of house hold from six villages falls under two blocks in Samastipur district. The main findings emerged from the analysis that in study area farmers were growing maize extensively in rabi season only. In kharif season flood and water logging condition is the main problem from August to January almost every year. Due to high risk involved in kharif and summer season farmers were found growing maize generally local variety with less input use. The farmers were reported that adoption of hybrid maize during risk situation avoids and uses open pollinated varieties (OPVs). Due to lacks of good quality maize seed varieties particularly for stress situation of flood, and droughts, bad marketing facilities, storage facilities etc. are the factors which limits the increase in productivity and production of maize in the areas. The hybrid variety of maize during the rabi season was extensively grown for commercial purpose not for consumption of human is the main drawback of utilization. The study also finds that due to high risk involve in kharif and summer season farmer were kept their cultivated land fallow. The paper suggests that more research and development is required for increase production and productivity particularly in abiotic stress conditions in the study area with development of suitable hybrid varieties of maize for human consumption. This is important for food and nutritional security to the economically poor families in the study area.

Suggested Citation

  • Kumar, Amalendu & Singh, K.M., 2017. "A Study on Maize Production in Samastipur (Bihar): An Empirical Analysis," MPRA Paper 80262, University Library of Munich, Germany, revised 23 Jan 2017.
  • Handle: RePEc:pra:mprapa:80262
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/80262/1/MPRA_paper_80262.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kijne, J. W. & Barker, R. & Molden. D., 2003. "Water productivity in agriculture: limits and opportunities for improvement," IWMI Books, Reports H032631, International Water Management Institute.
    2. Tuong, T. P. & Bouman, B. A. M., 2003. "Rice production in water-scarce environments," IWMI Books, Reports H032635, International Water Management Institute.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zwart, Sander J. & Bastiaanssen, Wim G. M., 2004. "Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize," Agricultural Water Management, Elsevier, vol. 69(2), pages 115-133, September.
    2. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    3. Manel Ben Hassen & Federica Monaco & Arianna Facchi & Marco Romani & Giampiero Valè & Guido Sali, 2017. "Economic Performance of Traditional and Modern Rice Varieties under Different Water Management Systems," Sustainability, MDPI, vol. 9(3), pages 1-10, February.
    4. Bouman, B.A.M. & Peng, S. & Castaneda, A.R. & Visperas, R.M., 2005. "Yield and water use of irrigated tropical aerobic rice systems," Agricultural Water Management, Elsevier, vol. 74(2), pages 87-105, June.
    5. Hafeez, Mohsin & Bundschuh, Jochen & Mushtaq, Shahbaz, 2014. "Exploring synergies and tradeoffs: Energy, water, and economic implications of water reuse in rice-based irrigation systems," Applied Energy, Elsevier, vol. 114(C), pages 889-900.
    6. Ahmadzadeh, Hojat & Morid, Saeed & Delavar, Majid & Srinivasan, Raghavan, 2016. "Using the SWAT model to assess the impacts of changing irrigation from surface to pressurized systems on water productivity and water saving in the Zarrineh Rud catchment," Agricultural Water Management, Elsevier, vol. 175(C), pages 15-28.
    7. Belder, P. & Bouman, B. A.M. & Spiertz, J.H.J., 2007. "Exploring options for water savings in lowland rice using a modelling approach," Agricultural Systems, Elsevier, vol. 92(1-3), pages 91-114, January.
    8. Li, Sen & Zuo, Qiang & Jin, Xinxin & Ma, Wenwen & Shi, Jianchu & Ben-Gal, Alon, 2018. "The physiological processes and mechanisms for superior water productivity of a popular ground cover rice production system," Agricultural Water Management, Elsevier, vol. 201(C), pages 11-20.
    9. Mushtaq, Shahbaz & Maraseni, Tek Narayan & Maroulis, Jerry & Hafeez, Mohsin, 2009. "Energy and water tradeoffs in enhancing food security: A selective international assessment," Energy Policy, Elsevier, vol. 37(9), pages 3635-3644, September.
    10. Cai, X.L. & Sharma, B.R., 2010. "Integrating remote sensing, census and weather data for an assessment of rice yield, water consumption and water productivity in the Indo-Gangetic river basin," Agricultural Water Management, Elsevier, vol. 97(2), pages 309-316, February.
    11. Thakur, Amod K. & Mohanty, Rajeeb K. & Singh, Rajbir & Patil, Dhiraj U., 2015. "Enhancing water and cropping productivity through Integrated System of Rice Intensification (ISRI) with aquaculture and horticulture under rainfed conditions," Agricultural Water Management, Elsevier, vol. 161(C), pages 65-76.
    12. Garg, Kaushal K. & Das, Bhabani S. & Safeeq, Mohammad & Bhadoria, Pratap B.S., 2009. "Measurement and modeling of soil water regime in a lowland paddy field showing preferential transport," Agricultural Water Management, Elsevier, vol. 96(12), pages 1705-1714, December.
    13. Bouman, B. A.M., 2007. "A conceptual framework for the improvement of crop water productivity at different spatial scales," Agricultural Systems, Elsevier, vol. 93(1-3), pages 43-60, March.
    14. Hui Li & Shan Zeng & Xiwen Luo & Longyu Fang & Zhanhao Liang & Wenwu Yang, 2021. "Design, DEM Simulation, and Field Experiments of a Novel Precision Seeder for Dry Direct-Seeded Rice with Film Mulching," Agriculture, MDPI, vol. 11(5), pages 1-15, April.
    15. Charlotte Fraiture, 2007. "Integrated water and food analysis at the global and basin level. An application of WATERSIM," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 185-198, January.
    16. Jensen, J. R. & Tuan, D. D. & Phong, D. T., 2006. "Water balancing at system and field scale: two approaches for estimating irrigation in puts," Conference Papers h038715, International Water Management Institute.
    17. Alauddin, Mohammad & Rashid Sarker, Md. Abdur & Islam, Zeenatul & Tisdell, Clement, 2020. "Adoption of alternate wetting and drying (AWD) irrigation as a water-saving technology in Bangladesh: Economic and environmental considerations," Land Use Policy, Elsevier, vol. 91(C).
    18. Bessembinder, J.J.E. & Leffelaar, P.A. & Dhindwal, A.S. & Ponsioen, T.C., 2005. "Which crop and which drop, and the scope for improvement of water productivity," Agricultural Water Management, Elsevier, vol. 73(2), pages 113-130, May.
    19. Chaudhary, V.P. & Singh, K.K. & Pratibha, G. & Bhattacharyya, Ranjan & Shamim, M. & Srinivas, I. & Patel, Anurag, 2017. "Energy conservation and greenhouse gas mitigation under different production systems in rice cultivation," Energy, Elsevier, vol. 130(C), pages 307-317.
    20. Maraseni, Tek Narayan & Mushtaq, Shahbaz & Hafeez, Mohsin & Maroulis, Jerry, 2010. "Greenhouse gas implications of water reuse in the Upper Pumpanga River Integrated Irrigation System, Philippines," Agricultural Water Management, Elsevier, vol. 97(3), pages 382-388, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • Q12 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets
    • Q16 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - R&D; Agricultural Technology; Biofuels; Agricultural Extension Services
    • Q18 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Policy; Food Policy; Animal Welfare Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:80262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.