IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

A Truthful Two-Stage Mechanism for Eliciting Probabilistic Estimates with Unknown Costs

  • Papakonstantinou, A.
  • Rogers, A.
  • Gerding, E. H.
  • Jennings, N. R

This paper reports on the design of a novel two-stage mechanism, based on strictly proper scoring rules, that motivates selfish rational agents to make a costly probabilistic estimate or forecast of a specified precision and report it truthfully to a centre. Our mechanism is applied in a setting where the centre is faced with multiple agents, and has no knowledge about their costs. Thus, in the first stage of the mechanism, the centre uses a reverse second price auction to allocate the estimation task to the agent who reveals the lowest cost. While, in the second stage, the centre issues a payment based on a strictly proper scoring rule. When taken together, the two stages motivate agents to reveal their true costs, and then to truthfully reveal their estimate. We prove that this mechanism is incentive compatible and individually rational, and then present empirical results comparing the performance of the well known quadratic, spherical and logarithmic scoring rules. We show that the quadratic and the logarithmic rules result in the centre making the highest and the lowest expected payment to agents respectively. At the same time, however, the payments of the latter rule are unbounded, and thus the spherical rule proves to be the best candidate in this setting.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 43320.

in new window

Date of creation: 2008
Date of revision:
Handle: RePEc:pra:mprapa:43320
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Reinhard Selten, 1998. "Axiomatic Characterization of the Quadratic Scoring Rule," Experimental Economics, Springer, vol. 1(1), pages 43-61, June.
  2. James E. Matheson & Robert L. Winkler, 1976. "Scoring Rules for Continuous Probability Distributions," Management Science, INFORMS, vol. 22(10), pages 1087-1096, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:43320. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.