IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/42696.html
   My bibliography  Save this paper

Multiple Fractional Response Variables with Continuous Endogenous Explanatory Variables

Author

Listed:
  • Nam, Suhyeon

Abstract

Multiple fractional response variables have two features. Each response is between zero and one, and the sum of the responses is one. In this paper, I develop an estimation method not only accounting for these two features, but also allowing for endogeneity. It is a two step estimation method employing a control function approach: the first step generates a control function using a linear regression, and the second step maximizes the multinomial log likelihood function with the multinomial logit conditional mean which depends on the control function generated in the first step. Monte Carlo simulations examine the performance of the estimation method when the conditional mean in the second step is misspecified. The simulation results provide evidence that the method's average partial effects (APEs) estimates approximate well true APEs and that the method's approximations is preferable to an alternative linear method. I apply this method to the Michigan Educational Assessment Program data in order to estimate the effects of public school spending on fourth grade math test outcomes, which are categorized into one of four levels. The effects of spending on the top two levels are statistically significant while almost those on the others are not.

Suggested Citation

  • Nam, Suhyeon, 2012. "Multiple Fractional Response Variables with Continuous Endogenous Explanatory Variables," MPRA Paper 42696, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:42696
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/42696/1/MPRA_paper_42696.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Papke, Leslie E. & Wooldridge, Jeffrey M., 2008. "Panel data methods for fractional response variables with an application to test pass rates," Journal of Econometrics, Elsevier, vol. 145(1-2), pages 121-133, July.
    2. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, January.
    3. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    4. Gourieroux, Christian & Monfort, Alain & Trognon, Alain, 1984. "Pseudo Maximum Likelihood Methods: Theory," Econometrica, Econometric Society, vol. 52(3), pages 681-700, May.
    5. Papke, Leslie E., 2005. "The effects of spending on test pass rates: evidence from Michigan," Journal of Public Economics, Elsevier, vol. 89(5-6), pages 821-839, June.
    6. Papke, Leslie E & Wooldridge, Jeffrey M, 1996. "Econometric Methods for Fractional Response Variables with an Application to 401(K) Plan Participation Rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 619-632, Nov.-Dec..
    7. Maarten L. Buis, 2008. "FMLOGIT: Stata module fitting a fractional multinomial logit model by quasi maximum likelihood," Statistical Software Components S456976, Boston College Department of Economics, revised 16 Feb 2017.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Multiple fractional responses; Endogeneity; Partial effects; Two step estimation; Control function approach; Misspecified conditional mean; Monte Carlo simulation;

    JEL classification:

    • I2 - Health, Education, and Welfare - - Education
    • H75 - Public Economics - - State and Local Government; Intergovernmental Relations - - - State and Local Government: Health, Education, and Welfare
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:42696. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.