IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/42193.html
   My bibliography  Save this paper

On the predictive power of implied volatility indexes: A comparative analysis with GARCH forecasted volatility

Author

Listed:
  • Bentes, Sonia R
  • Menezes, Rui

Abstract

This paper examines the behavior of several implied volatility indexes in order to compare them with the volatility forecasts obtained from estimating a GARCH model. Though volatility has always been a prevailing subject of research it has become particularly relevant given the increasingly complexity and uncertainty of stock markets in these days. An important measure to assess the market expectations of the future volatility of the underlying asset is the implied volatility (IV) indexes. Generally, these indexes are calculated based on the prices of out-of-the money put and call options on the underlying asset. Sometimes called the “investor fear gauge”, the IV indexes are a measure of the implied volatility of the underlying index. This study focuses on the implied and GARCH forecasted volatility of some emerging countries and some developed countries. More specifically, it compares the predictive power of the IV indexes with the ones provided by standard volatility models such as the ARCH/GARCH (Autoregressive Conditional Heteroskedasticity Model/ Generalized Autoregressive Conditional Heteroskedasticity Model) type models. Finally, a debate of the results is also provided.

Suggested Citation

  • Bentes, Sonia R & Menezes, Rui, 2012. "On the predictive power of implied volatility indexes: A comparative analysis with GARCH forecasted volatility," MPRA Paper 42193, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:42193
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/42193/1/MPRA_paper_42193.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daly, Kevin, 2008. "Financial volatility: Issues and measuring techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(11), pages 2377-2393.
    2. Robert F. Engle & Joshua Rosenberg, 1966. "Testing the Volatility Term Structure Using Option Hedging Criteria," New York University, Leonard N. Stern School Finance Department Working Paper Seires 96-24, New York University, Leonard N. Stern School of Business-.
    3. Chen, En-Te (John) & Clements, Adam, 2007. "S&P 500 implied volatility and monetary policy announcements," Finance Research Letters, Elsevier, vol. 4(4), pages 227-232, December.
    4. Agnolucci, Paolo, 2009. "Volatility in crude oil futures: A comparison of the predictive ability of GARCH and implied volatility models," Energy Economics, Elsevier, vol. 31(2), pages 316-321, March.
    5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    6. Chiras, Donald P. & Manaster, Steven, 1978. "The information content of option prices and a test of market efficiency," Journal of Financial Economics, Elsevier, vol. 6(2-3), pages 213-234.
    7. Canina, Linda & Figlewski, Stephen, 1993. "The Informational Content of Implied Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 659-681.
    8. Becker, Ralf & Clements, Adam E. & White, Scott I., 2006. "On the informational efficiency of S&P500 implied volatility," The North American Journal of Economics and Finance, Elsevier, vol. 17(2), pages 139-153, August.
    9. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    10. Pierre Giot, 2003. "The information content of implied volatility in agricultural commodity markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 23(5), pages 441-454, May.
    11. Martens, Martin & van Dijk, Dick, 2007. "Measuring volatility with the realized range," Journal of Econometrics, Elsevier, vol. 138(1), pages 181-207, May.
    12. Latane, Henry A & Rendleman, Richard J, Jr, 1976. "Standard Deviations of Stock Price Ratios Implied in Option Prices," Journal of Finance, American Finance Association, vol. 31(2), pages 369-381, May.
    13. Nam, Seung Oh & Oh, SeungYoung & Kim, Hyun Kyung & Kim, Byung Chun, 2006. "An empirical analysis of the price discovery and the pricing bias in the KOSPI 200 stock index derivatives markets," International Review of Financial Analysis, Elsevier, vol. 15(4-5), pages 398-414.
    14. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    15. Blair, Bevan J. & Poon, Ser-Huang & Taylor, Stephen J., 2001. "Forecasting S&P 100 volatility: the incremental information content of implied volatilities and high-frequency index returns," Journal of Econometrics, Elsevier, vol. 105(1), pages 5-26, November.
    16. Christensen, B. J. & Prabhala, N. R., 1998. "The relation between implied and realized volatility," Journal of Financial Economics, Elsevier, vol. 50(2), pages 125-150, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yam Wing Siu, 2020. "Impact of Expected Shortfall Approach on Capital Requirement Under Basel," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-34, January.
    2. Yam Wing Siu, 2018. "Volatility Forecast by Volatility Index and Its Use as a Risk Management Tool Under a Value-at-Risk Approach," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-48, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bentes, Sónia R., 2015. "A comparative analysis of the predictive power of implied volatility indices and GARCH forecasted volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 105-112.
    2. Bentes, Sonia R. & Menezes, Rui, 2013. "On the predictability of realized volatility using feasible GLS," Journal of Asian Economics, Elsevier, vol. 28(C), pages 58-66.
    3. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    4. Viteva, Svetlana & Veld-Merkoulova, Yulia V. & Campbell, Kevin, 2014. "The forecasting accuracy of implied volatility from ECX carbon options," Energy Economics, Elsevier, vol. 45(C), pages 475-484.
    5. Neely, Christopher J., 2009. "Forecasting foreign exchange volatility: Why is implied volatility biased and inefficient? And does it matter?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(1), pages 188-205, February.
    6. Imlak Shaikh & Puja Padhi, 2014. "The forecasting performance of implied volatility index: evidence from India VIX," Economic Change and Restructuring, Springer, vol. 47(4), pages 251-274, November.
    7. Heejoon Han & Myung D. Park, 2013. "Comparison of Realized Measure and Implied Volatility in Forecasting Volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 522-533, September.
    8. Agnolucci, Paolo, 2009. "Volatility in crude oil futures: A comparison of the predictive ability of GARCH and implied volatility models," Energy Economics, Elsevier, vol. 31(2), pages 316-321, March.
    9. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    10. Charles Corrado & Cameron Truong, 2004. "Forecasting Stock Index Volatility: The Incremental Information in the Intraday High-Low Price Range," Research Paper Series 127, Quantitative Finance Research Centre, University of Technology, Sydney.
    11. Heejoon Han & Shen Zhang, 2012. "Non‐stationary non‐parametric volatility model," Econometrics Journal, Royal Economic Society, vol. 15(2), pages 204-225, June.
    12. Szakmary, Andrew & Ors, Evren & Kyoung Kim, Jin & Davidson, Wallace III, 2003. "The predictive power of implied volatility: Evidence from 35 futures markets," Journal of Banking & Finance, Elsevier, vol. 27(11), pages 2151-2175, November.
    13. Bali, Turan G. & Weinbaum, David, 2007. "A conditional extreme value volatility estimator based on high-frequency returns," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 361-397, February.
    14. Tsiaras, Leonidas, 2009. "The Forecast Performance of Competing Implied Volatility Measures: The Case of Individual Stocks," Finance Research Group Working Papers F-2009-02, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    15. Chun, Dohyun & Cho, Hoon & Ryu, Doojin, 2019. "Forecasting the KOSPI200 spot volatility using various volatility measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 156-166.
    16. Bronka Rzepkowski, 2001. "Pouvoir prédictif de la volatilité implicite dans le prix des options de change," Économie et Prévision, Programme National Persée, vol. 148(2), pages 71-97.
    17. Vipul Kumar Singh, 2013. "Effectiveness of volatility models in option pricing: evidence from recent financial upheavals," Journal of Advances in Management Research, Emerald Group Publishing Limited, vol. 10(3), pages 352-375, October.
    18. Florian Ielpo & Benoît Sévi, 2014. "Forecasting the density of oil futures," Working Papers 2014-601, Department of Research, Ipag Business School.
    19. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    20. Eui Jung Chang & Benjamin Miranda Tabak, 2007. "Are implied volatilities more informative? The Brazilian real exchange rate case," Applied Financial Economics, Taylor & Francis Journals, vol. 17(7), pages 569-576.

    More about this item

    Keywords

    implied volatility; volatility forecasts; GARCH models; volatility indices;
    All these keywords.

    JEL classification:

    • F37 - International Economics - - International Finance - - - International Finance Forecasting and Simulation: Models and Applications
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:42193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.