IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/38682.html
   My bibliography  Save this paper

Risk components in UK cross-sectional equities: evidence of regimes and overstated parametric estimates

Author

Listed:
  • Rossi, Francesco

Abstract

We study the behavior and interaction of systematic and idiosyncratic components of risk in a cross-section of U.K. stocks. We find no clear evidence of a trend in any component of total risk, but we document different “regimes” in the behavior of each component of total risk, in their correlation patterns and thus in their contribution to aggregate risk. Comparing parametric and non-parametric estimates of residual risk, we find the former to significantly overstate diversifiable risk, opposite to some previous findings for the U.S. market, with the difference being very large especially when we include an industry component.

Suggested Citation

  • Rossi, Francesco, 2011. "Risk components in UK cross-sectional equities: evidence of regimes and overstated parametric estimates," MPRA Paper 38682, University Library of Munich, Germany, revised 31 Mar 2012.
  • Handle: RePEc:pra:mprapa:38682
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/38682/1/MPRA_paper_38682.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Turan G. Bali & Nusret Cakici & Xuemin (Sterling) Yan & Zhe Zhang, 2005. "Does Idiosyncratic Risk Really Matter?," Journal of Finance, American Finance Association, vol. 60(2), pages 905-929, April.
    2. Fama, Eugene F & French, Kenneth R, 1992. " The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    3. John Y. Campbell, 2001. "Have Individual Stocks Become More Volatile? An Empirical Exploration of Idiosyncratic Risk," Journal of Finance, American Finance Association, vol. 56(1), pages 1-43, February.
    4. Kris Jacobs & Kevin Q. Wang, 2004. "Idiosyncratic Consumption Risk and the Cross Section of Asset Returns," Journal of Finance, American Finance Association, vol. 59(5), pages 2211-2252, October.
    5. Li, Xiafei & Miffre, Joëlle & Brooks, Chris & O'Sullivan, Niall, 2008. "Momentum profits and time-varying unsystematic risk," Journal of Banking & Finance, Elsevier, vol. 32(4), pages 541-558, April.
    6. Larry G. Epstein & Martin Schneider, 2008. "Ambiguity, Information Quality, and Asset Pricing," Journal of Finance, American Finance Association, vol. 63(1), pages 197-228, February.
    7. Yexiao Xu & Burton G. Malkiel, 2003. "Investigating the Behavior of Idiosyncratic Volatility," The Journal of Business, University of Chicago Press, vol. 76(4), pages 613-644, October.
    8. Hui Guo & Robert Savickas, 2008. "Average Idiosyncratic Volatility in G7 Countries," Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1259-1296, May.
    9. Geert Bekaert & Campbell R. Harvey & Christian Lundblad, 2007. "Liquidity and Expected Returns: Lessons from Emerging Markets," Review of Financial Studies, Society for Financial Studies, vol. 20(6), pages 1783-1831, November.
    10. Ang, Andrew & Hodrick, Robert J. & Xing, Yuhang & Zhang, Xiaoyan, 2009. "High idiosyncratic volatility and low returns: International and further U.S. evidence," Journal of Financial Economics, Elsevier, vol. 91(1), pages 1-23, January.
    11. Eugene F. Fama & Kenneth R. French, 2008. "Dissecting Anomalies," Journal of Finance, American Finance Association, vol. 63(4), pages 1653-1678, August.
    12. Carhart, Mark M, 1997. " On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    13. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    14. Eugene F. Fama, 1968. "Risk, Return And Equilibrium: Some Clarifying Comments," Journal of Finance, American Finance Association, vol. 23(1), pages 29-40, March.
    15. K. J. Martijn Cremers & Jianping Mei, 2007. "Turning over Turnover," Review of Financial Studies, Society for Financial Studies, vol. 20(6), pages 1749-1782, November.
    16. Merton, Robert C, 1987. " A Simple Model of Capital Market Equilibrium with Incomplete Information," Journal of Finance, American Finance Association, vol. 42(3), pages 483-510, July.
    17. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    18. Andrew Ang & Robert J. Hodrick & Yuhang Xing & Xiaoyan Zhang, 2006. "The Cross-Section of Volatility and Expected Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 259-299, February.
    19. Yasushi Hamao & Jianping Mei & Yexiao Xu, 2003. "Idiosyncratic Risk and the Creative Destruction in Japan," NBER Working Papers 9642, National Bureau of Economic Research, Inc.
    20. Michael W. Brandt & Alon Brav & John R. Graham & Alok Kumar, 2010. "The Idiosyncratic Volatility Puzzle: Time Trend or Speculative Episodes?," Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 863-899, February.
    21. Matteo P. Arena & K. Stephen Haggard & Xuemin (Sterling) Yan, 2008. "Price Momentum and Idiosyncratic Volatility," The Financial Review, Eastern Finance Association, vol. 43(2), pages 159-190, May.
    22. Wei, Steven X. & Zhang, Chu, 2005. "Idiosyncratic risk does not matter: A re-examination of the relationship between average returns and average volatilities," Journal of Banking & Finance, Elsevier, vol. 29(3), pages 603-621, March.
    23. Ozgur S. Ince & R. Burt Porter, 2006. "INDIVIDUAL EQUITY RETURN DATA FROM THOMSON DATASTREAM: HANDLE WITH CARE!," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 29(4), pages 463-479.
    24. Rossi, Francesco, 2011. "U.K. cross-sectional equity data: do not trust the dataset! The case for robust investability filters," MPRA Paper 38303, University Library of Munich, Germany, revised Nov 2011.
    25. Narasimhan Jegadeesh, 2001. "Profitability of Momentum Strategies: An Evaluation of Alternative Explanations," Journal of Finance, American Finance Association, vol. 56(2), pages 699-720, April.
    26. Fu, Fangjian, 2009. "Idiosyncratic risk and the cross-section of expected stock returns," Journal of Financial Economics, Elsevier, vol. 91(1), pages 24-37, January.
    27. Bruce N. Lehmann, 1992. "Empirical Testing of Asset Pricing Models," NBER Working Papers 4043, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Idiosyncratic risk; residual risk; systematic risk; non parametric estimates; cross-sectional equities; cross-sectional risk; equities; U.K.; industry risk; correlation; regimes; factor models;

    JEL classification:

    • G1 - Financial Economics - - General Financial Markets
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:38682. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.