IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/26326.html
   My bibliography  Save this paper

Forecasting Malaysian Exchange Rate: Do Artificial Neural Networks Work?

Author

Listed:
  • Chan, Tze-Haw
  • Lye, Chun Teck
  • Hooy, Chee-Wooi

Abstract

Being a small and open economy, the stability and predictability of Malaysian foreign exchange are crucially important. However, despite the general failure of conventional monetary models, foreign exchange misalignments and authority intervention have both caused the forecasting process an uneasy task. The present paper employs the monetary-portfolio balance exchange rate model and its modified version in the analysis. We then compare two Artificial Neural Networks (ANNs) estimation procedures (MLFN and GRNN) with random walk (RW) in the modeling-prediction process of RM/USD during the post-Bretton Wood era (1990M1-2008M8). The out-of-sample forecasting assessment reveals that the ANNs have outperformed the RW, which in particular, the MLFNs outperform GRNNs where as the latter outperform the RW models with consistency in both the exchange rate models by all evaluation criteria. In addition, the findings also show that the modified model has superior forecasting performance than the first model. In brief, economic fundamentals are vital in forecasting and explaining the RM/USD exchange rate. The findings are beneficial in policy making, investment modeling as well as corporate planning.

Suggested Citation

  • Chan, Tze-Haw & Lye, Chun Teck & Hooy, Chee-Wooi, 2010. "Forecasting Malaysian Exchange Rate: Do Artificial Neural Networks Work?," MPRA Paper 26326, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:26326
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/26326/1/MPRA_paper_26326.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Panda, Chakradhara & Narasimhan, V., 2007. "Forecasting exchange rate better with artificial neural network," Journal of Policy Modeling, Elsevier, vol. 29(2), pages 227-236.
    2. Wittkemper, Hans-Georg & Steiner, Manfred, 1996. "Using neural networks to forecast the systematic risk of stocks," European Journal of Operational Research, Elsevier, vol. 90(3), pages 577-588, May.
    3. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    4. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    5. Ahmad Baharumshah & Venus Liew, 2006. "Forecasting Performance of Exponential Smooth Transition Autoregressive Exchange Rate Models," Open Economies Review, Springer, vol. 17(2), pages 235-251, April.
    6. Kuan, Chung-Ming & Liu, Tung, 1995. "Forecasting Exchange Rates Using Feedforward and Recurrent Neural Networks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(4), pages 347-364, Oct.-Dec..
    7. S. Baranzoni & P. Bianchi & L. Lambertini, 2000. "Multiproduct Firms, Product Differentiation, and Market Structure," Working Papers 368, Dipartimento Scienze Economiche, Universita' di Bologna.
    8. Bruce Mizrach, 1996. "Forecast Comparison in L2," Departmental Working Papers 199524, Rutgers University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chun-Teck Lye & Tze-Haw Chan & Chee-Wooi Hooy, 2012. "Nonlinear Analysis Of Chinese And Malaysian Exchange Rates Predictability With Monetary Fundamentals," Journal of Global Business and Economics, Global Research Agency, vol. 5(1), pages 38-49, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    2. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    3. Khurshid Kiani & Terry Kastens, 2008. "Testing Forecast Accuracy of Foreign Exchange Rates: Predictions from Feed Forward and Various Recurrent Neural Network Architectures," Computational Economics, Springer;Society for Computational Economics, vol. 32(4), pages 383-406, November.
    4. Cem Kadilar & Muammer Simsek & Cagdas Hakan Aladag, 2009. "Forecasting The Exchange Rate Series With Ann: The Case Of Turkey," Istanbul University Econometrics and Statistics e-Journal, Department of Econometrics, Faculty of Economics, Istanbul University, vol. 9(1), pages 17-29, May.
    5. Goutam Dutta & Pankaj Jha & Arnab Kumar Laha & Neeraj Mohan, 2006. "Artificial Neural Network Models for Forecasting Stock Price Index in the Bombay Stock Exchange," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 5(3), pages 283-295, December.
    6. Roberto Patuelli & Aura Reggiani & Peter Nijkamp & Norbert Schanne, 2011. "Neural networks for regional employment forecasts: are the parameters relevant?," Journal of Geographical Systems, Springer, vol. 13(1), pages 67-85, March.
    7. Norman R. Swanson & Halbert White, 1997. "A Model Selection Approach To Real-Time Macroeconomic Forecasting Using Linear Models And Artificial Neural Networks," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 540-550, November.
    8. Roberto Patuelli & Peter Nijkamp & Simonetta Longhi & Aura Reggiani, 2008. "Neural Networks and Genetic Algorithms as Forecasting Tools: A Case Study on German Regions," Environment and Planning B, , vol. 35(4), pages 701-722, August.
    9. Chun-Teck Lye & Tze-Haw Chan & Chee-Wooi Hooy, 2012. "Nonlinear Analysis Of Chinese And Malaysian Exchange Rates Predictability With Monetary Fundamentals," Journal of Global Business and Economics, Global Research Agency, vol. 5(1), pages 38-49, July.
    10. Sermpinis, Georgios & Theofilatos, Konstantinos & Karathanasopoulos, Andreas & Georgopoulos, Efstratios F. & Dunis, Christian, 2013. "Forecasting foreign exchange rates with adaptive neural networks using radial-basis functions and Particle Swarm Optimization," European Journal of Operational Research, Elsevier, vol. 225(3), pages 528-540.
    11. Ahmad Baharumshah & Venus Liew, 2006. "Forecasting Performance of Exponential Smooth Transition Autoregressive Exchange Rate Models," Open Economies Review, Springer, vol. 17(2), pages 235-251, April.
    12. Heravi, Saeed & Osborn, Denise R. & Birchenhall, C. R., 2004. "Linear versus neural network forecasts for European industrial production series," International Journal of Forecasting, Elsevier, vol. 20(3), pages 435-446.
    13. Erdinc Akyildirim & Oguzhan Cepni & Shaen Corbet & Gazi Salah Uddin, 2023. "Forecasting mid-price movement of Bitcoin futures using machine learning," Annals of Operations Research, Springer, vol. 330(1), pages 553-584, November.
    14. Wu, Yih-Jiuan, 1998. "Exchange rate forecasting: an application of radial basis function neural networks," ISU General Staff Papers 1998010108000013540, Iowa State University, Department of Economics.
    15. Dress, Korbinian & Lessmann, Stefan & von Mettenheim, Hans-Jörg, 2018. "Residual value forecasting using asymmetric cost functions," International Journal of Forecasting, Elsevier, vol. 34(4), pages 551-565.
    16. Swanson, Norman R. & White, Halbert, 1997. "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 439-461, December.
    17. Fildes, Robert, 2006. "The forecasting journals and their contribution to forecasting research: Citation analysis and expert opinion," International Journal of Forecasting, Elsevier, vol. 22(3), pages 415-432.
    18. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    19. Saman, Corina, 2011. "Scenarios of the Romanian GDP Evolution With Neural Models," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 129-140, December.
    20. John Barkoulas & Christopher F. Baum & Atreya Chakraborty, 1996. "Nearest-Neighbor Forecasts of U.S. Interest Rates," Boston College Working Papers in Economics 313., Boston College Department of Economics, revised 01 Apr 2003.

    More about this item

    Keywords

    Artificial Neural Networks; Forecasting; modified monetary-portfolio balance model; RM/USD;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • F31 - International Economics - - International Finance - - - Foreign Exchange

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:26326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.