IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Trade through endogenous intermediaries

  • Kilenthong, Weerachart
  • Qin, Cheng-Zhong

We apply an intermediation game of Townsend (1983) to analyze trade in an exchange economy through endogenous intermediaries. In this game, each trader has the opportunity to become an intermediary by oering to buy or sell unlimited quantities of the commodities at a certain price vector and for a certain group of customers subject to feasibility constraint. An intermediary will not be active unless some of its customers subsequently choose to trade with it. We introduce an "intermediation core" and show that the subgame-perfect equilibrium allocations of the intermediation game are contained in the intermediation core, similar to the inclusion of competitive equilibrium allocations in the core usually studied. We also identify, in terms of the supporting intermediary structures, intermediation core allocations which are also subgame-perfect equilibrium allocations of the intermediation game. These results provide both a characterization and welfare properties of subgame-perfect equilibrium allocations of the intermediation game.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://mpra.ub.uni-muenchen.de/22046/1/MPRA_paper_22046.pdf
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 22046.

as
in new window

Length:
Date of creation: 13 Apr 2010
Date of revision:
Handle: RePEc:pra:mprapa:22046
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Mas-Colell, Andreu, 1975. "A model of equilibrium with differentiated commodities," Journal of Mathematical Economics, Elsevier, vol. 2(2), pages 263-295.
  2. Townsend, Robert M., 1983. "Theories of intermediated structures," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 18(1), pages 221-272, January.
  3. Qin, Cheng-Zhong & Shapley, Lloyd S. & Shimomura, Ken-Ichi, 2006. "The Walras core of an economy and its limit theorem," Journal of Mathematical Economics, Elsevier, vol. 42(2), pages 180-197, April.
  4. Abreu, Dilip & Sen, Arunava, 1990. "Subgame perfect implementation: A necessary and almost sufficient condition," Journal of Economic Theory, Elsevier, vol. 50(2), pages 285-299, April.
  5. Moore, John & Repullo, Rafael, 1988. "Subgame Perfect Implementation," Econometrica, Econometric Society, vol. 56(5), pages 1191-1220, September.
  6. John H. Boyd & Edward C. Prescott, 1985. "Financial intermediary-coalitions," Staff Report 87, Federal Reserve Bank of Minneapolis.
  7. John H. Boyd & Edward C. Prescott & Bruce D. Smith, 1988. "Organizations in economic analysis," Working Papers 385, Federal Reserve Bank of Minneapolis.
  8. Nicholas Yannelis, 2009. "Debreu’s social equilibrium theorem with asymmetric information and a continuum of agents," Economic Theory, Springer, vol. 38(2), pages 419-432, February.
  9. Townsend, Robert M, 1978. "Intermediation with Costly Bilateral Exchange," Review of Economic Studies, Wiley Blackwell, vol. 45(3), pages 417-25, October.
  10. Roberto Serrano & Rajiv Vohra, 1997. "Non-cooperative implementation of the core," Social Choice and Welfare, Springer, vol. 14(4), pages 513-525.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:22046. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.