IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

How democracy resolves conflict in difficult games

  • Brams, Steven J.
  • Kilgour, D. Marc

Democracy resolves conflicts in difficult games like Prisoners’ Dilemma and Chicken by stabilizing their cooperative outcomes. It does so by transforming these games into games in which voters are presented with a choice between a cooperative outcome and a Pareto-inferior noncooperative outcome. In the transformed game, it is always rational for voters to vote for the cooperative outcome, because cooperation is a weakly dominant strategy independent of the decision rule and the number of voters who choose it. Such games are illustrated by 2-person and n-person public-goods games, in which it is optimal to be a free rider, and a biblical story from the book of Exodus.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://mpra.ub.uni-muenchen.de/12751/1/MPRA_paper_12751.pdf
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 12751.

as
in new window

Length:
Date of creation: Oct 2008
Date of revision:
Handle: RePEc:pra:mprapa:12751
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. repec:cup:cbooks:9780521555838 is not listed on IDEAS
  2. I. D. Hill, 2008. "Mathematics and Democracy: Designing Better Voting and Fair-division Procedures," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(4), pages 1032-1033.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:12751. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.