IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/126775.html

Analyzing Nigeria’s unemployment problem: evidence from the quantile regression approach

Author

Listed:
  • Fatai, Adesola
  • Adekunle, Wasiu

Abstract

Most studies on Okun’s Law focus on mean effects using ordinary least squares or dynamic models, with limited use of quantile regression. This leaves unexplored how output growth impacts unemployment across different points of the unemployment distribution. By applying a static quantile regression framework, this study fills this gap in analyzing the unemployment problem and its key determinants in Nigeria from 1991 to 2024. The findings showed that aggregate GDP growth reduces unemployment, with stronger effects at higher quantiles. However, results showed a weaker-than-expected Okun’s Law coefficient, reflecting the non-inclusive nature of Nigeria's economic growth. Sectoral analysis reveals that while Agriculture and Industry exert limited effects, the Construction and Services sectors significantly reduce unemployment, particularly through key activities such as Professional & Scientific Services, Trade, Real Estate, and Health. Government consumption largely worsens unemployment, whereas net FDI inflows foster job creation. The results highlight the need for structural transformation and policy realignment towards productive investments that strengthen the employment intensity of growth.

Suggested Citation

  • Fatai, Adesola & Adekunle, Wasiu, 2025. "Analyzing Nigeria’s unemployment problem: evidence from the quantile regression approach," MPRA Paper 126775, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:126775
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/126775/1/MPRA_paper_126775.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Silvia Palombi & Roger Perman & Christophe Tav鲡, 2015. "Regional growth and unemployment in the medium run: asymmetric cointegrated Okun's Law for UK regions," Applied Economics, Taylor & Francis Journals, vol. 47(57), pages 6228-6238, December.
    2. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    3. Charles Adams & David T. Coe, 1990. "A Systems Approach to Estimating the Natural Rate of Unemployment and Potential Output for the United States," IMF Staff Papers, Palgrave Macmillan, vol. 37(2), pages 232-293, June.
    4. Usha Devi Chuttoo, 2020. "Effect of Economic Growth on Unemployment and Validity of Okun’s Law in Mauritius," Global Journal of Emerging Market Economies, Emerging Markets Forum, vol. 12(2), pages 231-250, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdisalan Aden Mohamed, 2024. "Economic growth and unemployment nexus: empirical test of Okun’s law in Somalia," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 13(1), pages 1-12, December.
    2. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    3. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    4. Salimata Sissoko, 2011. "Working Paper 03-11 - Niveau de décentralisation de la négociation et structure des salaires," Working Papers 1103, Federal Planning Bureau, Belgium.
    5. Korom, Philipp, 2016. "Inherited advantage: The importance of inheritance for private wealth accumulation in Europe," MPIfG Discussion Paper 16/11, Max Planck Institute for the Study of Societies.
    6. Daniele, Vittorio, 2007. "Criminalità e investimenti esteri. Un’analisi per le province italiane [The effect of organized crime on Foreign Investments. An Empirical Analysis for the Italian Provinces]," MPRA Paper 6417, University Library of Munich, Germany.
    7. Ma, Lingjie & Koenker, Roger, 2006. "Quantile regression methods for recursive structural equation models," Journal of Econometrics, Elsevier, vol. 134(2), pages 471-506, October.
    8. Dutta, Anupam & Bouri, Elie & Rothovius, Timo & Uddin, Gazi Salah, 2023. "Climate risk and green investments: New evidence," Energy, Elsevier, vol. 265(C).
    9. Cowling, Marc & Ughetto, Elisa & Lee, Neil, 2018. "The innovation debt penalty: Cost of debt, loan default, and the effects of a public loan guarantee on high-tech firms," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 166-176.
    10. Haddou, Samira, 2024. "Determinants of CDS in core and peripheral European countries: A comparative study during crisis and calm periods," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    11. Niematallah Elamin & Mototsugu Fukushige, 2016. "A Quantile Regression Model for Electricity Peak Demand Forecasting: An Approach to Avoiding Power Blackouts," Discussion Papers in Economics and Business 16-22, Osaka University, Graduate School of Economics.
    12. Meng, Chang & Ghafoori, Noorulhaq, 2024. "The economic impact of terrorism in South Asia," Socio-Economic Planning Sciences, Elsevier, vol. 96(C).
    13. Halldén, Filip & Hultberg, Anna & Ahmed, Ali & Uddin, Gazi Salah & Yahya, Muhammad & Troster, Victor, 2025. "The role of institutional quality on public renewable energy investments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
    14. Peracchi, Franco, 2002. "On estimating conditional quantiles and distribution functions," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 433-447, February.
    15. Jan Fałkowski & Maciej Jakubowski & Paweł Strawiński, 2014. "Returns from income strategies in rural Poland," The Economics of Transition, The European Bank for Reconstruction and Development, vol. 22(1), pages 139-178, January.
    16. Trojanek, Radoslaw & Huderek-Glapska, Sonia, 2018. "Measuring the noise cost of aviation – The association between the Limited Use Area around Warsaw Chopin Airport and property values," Journal of Air Transport Management, Elsevier, vol. 67(C), pages 103-114.
    17. Charlier, Isabelle & Paindaveine, Davy & Saracco, Jérôme, 2015. "Conditional quantile estimation based on optimal quantization: From theory to practice," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 20-39.
    18. Kato, Kengo & F. Galvao, Antonio & Montes-Rojas, Gabriel V., 2012. "Asymptotics for panel quantile regression models with individual effects," Journal of Econometrics, Elsevier, vol. 170(1), pages 76-91.
    19. Ron Diris, 2017. "Don't Hold Back? The Effect of Grade Retention on Student Achievement," Education Finance and Policy, MIT Press, vol. 12(3), pages 312-341, Summer.
    20. Huong Thu Le & Ha Trong Nguyen, 2018. "The evolution of the gender test score gap through seventh grade: new insights from Australia using unconditional quantile regression and decomposition," IZA Journal of Labor Economics, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 7(1), pages 1-42, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • J64 - Labor and Demographic Economics - - Mobility, Unemployment, Vacancies, and Immigrant Workers - - - Unemployment: Models, Duration, Incidence, and Job Search
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • O14 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Industrialization; Manufacturing and Service Industries; Choice of Technology

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:126775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.