IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/11851.html
   My bibliography  Save this paper

Stochastically more risk averse: A contextual theory of stochastic discrete choice under risk

Author

Listed:
  • Wilcox, Nathaniel

Abstract

Microeconometric treatments of discrete choice under risk are typically homoscedastic latent variable models. Specifically, choice probabilities are given by preference functional differences (given by expected utility, rank-dependent utility, etc.) embedded in cumulative distribution functions. This approach has a problem: Estimated utility function parameters meant to represent agents’ degree of risk aversion in the sense of Pratt (1964) do not imply a suggested “stochastically more risk averse” relation within such models. A new heteroscedastic model called “contextual utility” remedies this, and estimates in one data set suggest it explains (and especially predicts) as well or better than other stochastic models.

Suggested Citation

  • Wilcox, Nathaniel, 2007. "Stochastically more risk averse: A contextual theory of stochastic discrete choice under risk," MPRA Paper 11851, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:11851
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/11851/1/MPRA_paper_11851.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Loomes, Graham & Moffatt, Peter G & Sugden, Robert, 2002. "A Microeconometric Test of Alternative Stochastic Theories of Risky Choice," Journal of Risk and Uncertainty, Springer, vol. 24(2), pages 103-130, March.
    2. Loomes, Graham & Sugden, Robert, 1998. "Testing Different Stochastic Specifications of Risky Choice," Economica, London School of Economics and Political Science, vol. 65(260), pages 581-598, November.
    3. John D. Hey, 2018. "Why We Should Not Be Silent About Noise," World Scientific Book Chapters, in: Experiments in Economics Decision Making and Markets, chapter 13, pages 309-329, World Scientific Publishing Co. Pte. Ltd..
    4. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711.
    5. Chew, Soo Hong, 1983. "A Generalization of the Quasilinear Mean with Applications to the Measurement of Income Inequality and Decision Theory Resolving the Allais Paradox," Econometrica, Econometric Society, vol. 51(4), pages 1065-1092, July.
    6. Steffen Andersen & Glenn W. Harrison & Morten I. Lau & E. Elisabet Rutström, 2008. "Eliciting Risk and Time Preferences," Econometrica, Econometric Society, vol. 76(3), pages 583-618, May.
    7. David Buschena & David Zilberman, 2008. "Generalized expected utility, heteroscedastic error, and path dependence in risky choice," Journal of Risk and Uncertainty, Springer, vol. 36(2), pages 201-201, April.
    8. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    9. John D. Hey & Chris Orme, 2018. "Investigating Generalizations Of Expected Utility Theory Using Experimental Data," World Scientific Book Chapters, in: Experiments in Economics Decision Making and Markets, chapter 3, pages 63-98, World Scientific Publishing Co. Pte. Ltd..
    10. Peter Moffatt, 2005. "Stochastic Choice and the Allocation of Cognitive Effort," Experimental Economics, Springer;Economic Science Association, vol. 8(4), pages 369-388, December.
    11. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    12. McKelvey Richard D. & Palfrey Thomas R., 1995. "Quantal Response Equilibria for Normal Form Games," Games and Economic Behavior, Elsevier, vol. 10(1), pages 6-38, July.
    13. Loomes, Graham & Sugden, Robert, 1995. "Incorporating a stochastic element into decision theories," European Economic Review, Elsevier, vol. 39(3-4), pages 641-648, April.
    14. Starmer, Chris & Sugden, Robert, 1989. "Probability and Juxtaposition Effects: An Experimental Investigation of the Common Ratio Effect," Journal of Risk and Uncertainty, Springer, vol. 2(2), pages 159-178, June.
    15. Peter Moffatt & Simon Peters, 2001. "Testing for the Presence of a Tremble in Economic Experiments," Experimental Economics, Springer;Economic Science Association, vol. 4(3), pages 221-228, December.
    16. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    17. Charles A. Holt & Susan K. Laury, 2002. "Risk Aversion and Incentive Effects," American Economic Review, American Economic Association, vol. 92(5), pages 1644-1655, December.
    18. Colin Camerer & Teck-Hua Ho, 1999. "Experience-weighted Attraction Learning in Normal Form Games," Econometrica, Econometric Society, vol. 67(4), pages 827-874, July.
    19. Carbone, Enrica, 1997. "Investigation of stochastic preference theory using experimental data," Economics Letters, Elsevier, vol. 57(3), pages 305-311, December.
    20. John D. Hey, 2018. "Experimental investigations of errors in decision making under risk," World Scientific Book Chapters, in: Experiments in Economics Decision Making and Markets, chapter 17, pages 381-388, World Scientific Publishing Co. Pte. Ltd..
    21. Faruk Gul & Wolfgang Pesendorfer, 2006. "Random Expected Utility," Econometrica, Econometric Society, vol. 74(1), pages 121-146, January.
    22. John D. Hey, 2018. "Does Repetition Improve Consistency?," World Scientific Book Chapters, in: Experiments in Economics Decision Making and Markets, chapter 2, pages 13-62, World Scientific Publishing Co. Pte. Ltd..
    23. Pavlo Blavatskyy, 2007. "Stochastic expected utility theory," Journal of Risk and Uncertainty, Springer, vol. 34(3), pages 259-286, June.
    24. Frederick Mosteller & Philip Nogee, 1951. "An Experimental Measurement of Utility," Journal of Political Economy, University of Chicago Press, vol. 59, pages 371-371.
    25. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, August.
    26. Hey, John D. & Carbone, Enrica, 1995. "Stochastic choice with deterministic preferences: An experimental investigation," Economics Letters, Elsevier, vol. 47(2), pages 161-167, February.
    27. Gerard Debreu, 1957. "Stochastic Choice and Cardinal Utility," Cowles Foundation Discussion Papers 39, Cowles Foundation for Research in Economics, Yale University.
    28. Glenn Harrison & E. Rutström, 2009. "Expected utility theory and prospect theory: one wedding and a decent funeral," Experimental Economics, Springer;Economic Science Association, vol. 12(2), pages 133-158, June.
    29. Kahneman, Daniel & Tversky, Amos, 1979. "Prospect Theory: An Analysis of Decision under Risk," Econometrica, Econometric Society, vol. 47(2), pages 263-291, March.
    30. Drazen Prelec, 1998. "The Probability Weighting Function," Econometrica, Econometric Society, vol. 66(3), pages 497-528, May.
    31. Rothschild, Michael & Stiglitz, Joseph E., 1970. "Increasing risk: I. A definition," Journal of Economic Theory, Elsevier, vol. 2(3), pages 225-243, September.
    32. Papke, Leslie E & Wooldridge, Jeffrey M, 1996. "Econometric Methods for Fractional Response Variables with an Application to 401(K) Plan Participation Rates," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 619-632, Nov.-Dec..
    33. Machina, Mark J, 1985. "Stochastic Choice Functions Generated from Deterministic Preferences over Lotteries," Economic Journal, Royal Economic Society, vol. 95(379), pages 575-594, September.
    34. Ballinger, T Parker & Wilcox, Nathaniel T, 1997. "Decisions, Error and Heterogeneity," Economic Journal, Royal Economic Society, vol. 107(443), pages 1090-1105, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Conte & John D. Hey & Peter G. Moffatt, 2018. "Mixture models of choice under risk," World Scientific Book Chapters, in: Experiments in Economics Decision Making and Markets, chapter 1, pages 3-12, World Scientific Publishing Co. Pte. Ltd..
    2. Nathaniel T. Wilcox, 2015. "Error and Generalization in Discrete Choice Under Risk," Working Papers 15-11, Chapman University, Economic Science Institute.
    3. Andreas C Drichoutis & Jayson L Lusk, 2014. "Judging Statistical Models of Individual Decision Making under Risk Using In- and Out-of-Sample Criteria," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-13, July.
    4. Andersen, Steffen & Harrison, Glenn W. & Lau, Morten Igel & Rutström, Elisabet E., 2010. "Behavioral econometrics for psychologists," Journal of Economic Psychology, Elsevier, vol. 31(4), pages 553-576, August.
    5. Pavlo Blavatskyy, 2007. "Stochastic expected utility theory," Journal of Risk and Uncertainty, Springer, vol. 34(3), pages 259-286, June.
    6. Henry Stott, 2006. "Cumulative prospect theory's functional menagerie," Journal of Risk and Uncertainty, Springer, vol. 32(2), pages 101-130, March.
    7. Pavlo R. Blavatskyy, 2020. "Dual choice axiom and probabilistic choice," Journal of Risk and Uncertainty, Springer, vol. 61(1), pages 25-41, August.
    8. Pavlo R. Blavatskyy & Ganna Pogrebna, 2010. "Models of stochastic choice and decision theories: why both are important for analyzing decisions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(6), pages 963-986.
    9. David M. Bruner, 2017. "Does decision error decrease with risk aversion?," Experimental Economics, Springer;Economic Science Association, vol. 20(1), pages 259-273, March.
    10. Adam Booij & Bernard Praag & Gijs Kuilen, 2010. "A parametric analysis of prospect theory’s functionals for the general population," Theory and Decision, Springer, vol. 68(1), pages 115-148, February.
    11. David Bruner, 2009. "Changing the probability versus changing the reward," Experimental Economics, Springer;Economic Science Association, vol. 12(4), pages 367-385, December.
    12. Blavatskyy, Pavlo R., 2008. "Stochastic utility theorem," Journal of Mathematical Economics, Elsevier, vol. 44(11), pages 1049-1056, December.
    13. Nathaniel T. Wilcox, 2015. "Unusual Estimates of Probability Weighting Functions," Working Papers 15-10, Chapman University, Economic Science Institute.
    14. Pavlo Blavatskyy, 2014. "Stronger utility," Theory and Decision, Springer, vol. 76(2), pages 265-286, February.
    15. John D. Hey, 2018. "Why We Should Not Be Silent About Noise," World Scientific Book Chapters, in: Experiments in Economics Decision Making and Markets, chapter 13, pages 309-329, World Scientific Publishing Co. Pte. Ltd..
    16. Pavlo Blavatskyy, 2012. "Probabilistic choice and stochastic dominance," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 50(1), pages 59-83, May.
    17. Blavatskyy, Pavlo, 2013. "Which decision theory?," Economics Letters, Elsevier, vol. 120(1), pages 40-44.
    18. Galarza, Francisco, 2009. "Choices under Risk in Rural Peru," MPRA Paper 17708, University Library of Munich, Germany.
    19. Jakusch, Sven Thorsten & Meyer, Steffen & Hackethal, Andreas, 2019. "Taming models of prospect theory in the wild? Estimation of Vlcek and Hens (2011)," SAFE Working Paper Series 146, Leibniz Institute for Financial Research SAFE.
    20. Daniel Navarro-Martinez & Graham Loomes & Andrea Isoni & David Butler & Larbi Alaoui, 2018. "Boundedly rational expected utility theory," Journal of Risk and Uncertainty, Springer, vol. 57(3), pages 199-223, December.

    More about this item

    Keywords

    risk; more risk averse; discrete choice; stochastic choice; heteroscedasticity;
    All these keywords.

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C91 - Mathematical and Quantitative Methods - - Design of Experiments - - - Laboratory, Individual Behavior

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:11851. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.