IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Stochastic utility theorem

  • Blavatskyy, Pavlo R.
Registered author(s):

    This paper analyzes individual decision making. It is assumed that an individual does not have a preference relation on the set of lotteries. Instead, the primitive of choice is a choice probability that captures the likelihood of one lottery being chosen over the other. Choice probabilities have a stochastic utility representation if they can be written as a non-decreasing function of the difference in expected utilities of the lotteries. Choice probabilities admit a stochastic utility representation if and only if they are complete, strongly transitive, continuous, independent of common consequences and interchangeable. Axioms of stochastic utility are consistent with systematic violations of betweenness and a common ratio effect but not with a common consequence effect. Special cases of stochastic utility include the Fechner model of random errors, Luce choice model and a tremble model of [Harless, D., Camerer, C., 1994. The predictive utility of generalized expected utility theories. Econometrica 62, 1251-1289].

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/B6VBY-4RMFP3V-1/2/a7daf170a36439998256929711d853fa
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Mathematical Economics.

    Volume (Year): 44 (2008)
    Issue (Month): 11 (December)
    Pages: 1049-1056

    as
    in new window

    Handle: RePEc:eee:mateco:v:44:y:2008:i:11:p:1049-1056
    Contact details of provider: Web page: http://www.elsevier.com/locate/jmateco

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Hey, John D., 1995. "Experimental investigations of errors in decision making under risk," European Economic Review, Elsevier, vol. 39(3-4), pages 633-640, April.
    2. Wu, George, 1994. "An Empirical Test of Ordinal Independence," Journal of Risk and Uncertainty, Springer, vol. 9(1), pages 39-60, July.
    3. Carbone, Enrica, 1997. "Investigation of stochastic preference theory using experimental data," Economics Letters, Elsevier, vol. 57(3), pages 305-311, December.
    4. Loomes, Graham & Sugden, Robert, 1995. "Incorporating a stochastic element into decision theories," European Economic Review, Elsevier, vol. 39(3-4), pages 641-648, April.
    5. Graham Loomes, 2005. "Modelling the Stochastic Component of Behaviour in Experiments: Some Issues for the Interpretation of Data," Experimental Economics, Springer, vol. 8(4), pages 301-323, December.
    6. Blavatskyy, Pavlo R., 2006. "Violations of betweenness or random errors?," Economics Letters, Elsevier, vol. 91(1), pages 34-38, April.
    7. George Wu & Richard Gonzalez, 1996. "Curvature of the Probability Weighting Function," Management Science, INFORMS, vol. 42(12), pages 1676-1690, December.
    8. Hey, John D. & Carbone, Enrica, 1995. "Stochastic choice with deterministic preferences: An experimental investigation," Economics Letters, Elsevier, vol. 47(2), pages 161-167, February.
    9. Camerer, Colin F, 1989. " An Experimental Test of Several Generalized Utility Theories," Journal of Risk and Uncertainty, Springer, vol. 2(1), pages 61-104, April.
    10. F. Gul & W. Pesendorfer, 2002. "Random Expected Utility," Princeton Economic Theory Working Papers 497768e9b9fc18361ac0810b3, David K. Levine.
    11. Chew, S H & Epstein, Larry G & Segal, U, 1991. "Mixture Symmetry and Quadratic Utility," Econometrica, Econometric Society, vol. 59(1), pages 139-63, January.
    12. Harless, David W & Camerer, Colin F, 1994. "The Predictive Utility of Generalized Expected Utility Theories," Econometrica, Econometric Society, vol. 62(6), pages 1251-89, November.
    13. David Buschena & David Zilberman, 2000. "Generalized Expected Utility, Heteroscedastic Error, and Path Dependence in Risky Choice," Journal of Risk and Uncertainty, Springer, vol. 20(1), pages 67-88, January.
    14. Fishburn, Peter C, 1978. "A Probabilistic Expected Utility Theory of Risky Binary Choices," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 19(3), pages 633-46, October.
    15. Starmer, Chris & Sugden, Robert, 1989. " Probability and Juxtaposition Effects: An Experimental Investigation of the Common Ratio Effect," Journal of Risk and Uncertainty, Springer, vol. 2(2), pages 159-78, June.
    16. Ballinger, T Parker & Wilcox, Nathaniel T, 1997. "Decisions, Error and Heterogeneity," Economic Journal, Royal Economic Society, vol. 107(443), pages 1090-1105, July.
    17. Loomes, Graham & Sugden, Robert, 1998. "Testing Different Stochastic Specifications of Risky Choice," Economica, London School of Economics and Political Science, vol. 65(260), pages 581-98, November.
    18. Pavlo Blavatskyy, 2007. "Stochastic expected utility theory," Journal of Risk and Uncertainty, Springer, vol. 34(3), pages 259-286, June.
    19. Machina, Mark J, 1985. "Stochastic Choice Functions Generated from Deterministic Preferences over Lotteries," Economic Journal, Royal Economic Society, vol. 95(379), pages 575-94, September.
    20. Camerer, Colin F & Ho, Teck-Hua, 1994. "Violations of the Betweenness Axiom and Nonlinearity in Probability," Journal of Risk and Uncertainty, Springer, vol. 8(2), pages 167-96, March.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:mateco:v:44:y:2008:i:11:p:1049-1056. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.