IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

A Model of Probabilistic Choice Satisfying First-Order Stochastic Dominance

  • Pavlo R. Blavatskyy

    ()

    (Institute of Public Finance, University of Innsbruck, A-6020 Innsbruck, Austria)

Registered author(s):

    This paper presents a new model of probabilistic binary choice under risk. In this model, a decision maker always satisfies first-order stochastic dominance. If neither lottery stochastically dominates the other alternative, a decision maker chooses in a probabilistic manner. The proposed model is derived from four standard axioms (completeness, weak stochastic transitivity, continuity, and common consequence independence) and two relatively new axioms. The proposed model provides a better fit to experimental data than do existing models. The baseline model can be extended to other domains such as modeling variable consumer demand. This paper was accepted by Peter Wakker, decision analysis.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://dx.doi.org/10.1287/mnsc.1100.1285
    Download Restriction: no

    Article provided by INFORMS in its journal Management Science.

    Volume (Year): 57 (2011)
    Issue (Month): 3 (March)
    Pages: 542-548

    as
    in new window

    Handle: RePEc:inm:ormnsc:v:57:y:2011:i:3:p:542-548
    Contact details of provider: Postal:
    7240 Parkway Drive, Suite 300, Hanover, MD 21076 USA

    Phone: +1-443-757-3500
    Fax: 443-757-3515
    Web page: http://www.informs.org/
    Email:


    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Wilcox, Nathaniel T., 2011. "'Stochastically more risk averse:' A contextual theory of stochastic discrete choice under risk," Journal of Econometrics, Elsevier, vol. 162(1), pages 89-104, May.
    2. Hey, John D & Orme, Chris, 1994. "Investigating Generalizations of Expected Utility Theory Using Experimental Data," Econometrica, Econometric Society, vol. 62(6), pages 1291-1326, November.
    3. Machina, Mark J, 1982. ""Expected Utility" Analysis without the Independence Axiom," Econometrica, Econometric Society, vol. 50(2), pages 277-323, March.
    4. David Buschena & David Zilberman, 2008. "Generalized expected utility, heteroscedastic error, and path dependence in risky choice," Journal of Risk and Uncertainty, Springer, vol. 36(2), pages 201-201, April.
    5. John Hey, . "Does Repetition Improve Consistency?," Discussion Papers 99/28, Department of Economics, University of York.
    6. Hey, John D., 1995. "Experimental investigations of errors in decision making under risk," European Economic Review, Elsevier, vol. 39(3-4), pages 633-640, April.
    7. George Wu & John List & Uri Gneezy, 2006. "The uncertainty effect: When a risky prospect is valued less than its worst possible outcome," Framed Field Experiments 00152, The Field Experiments Website.
    8. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-33, March.
    9. Pavlo R. Blavatskyy & Ganna Pogrebna, 2010. "Models of stochastic choice and decision theories: why both are important for analyzing decisions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(6), pages 963-986.
    10. Camerer, Colin F & Ho, Teck-Hua, 1994. "Violations of the Betweenness Axiom and Nonlinearity in Probability," Journal of Risk and Uncertainty, Springer, vol. 8(2), pages 167-96, March.
    11. Iverson, G. & Falmagne, J. -C., 1985. "Statistical issues in measurement," Mathematical Social Sciences, Elsevier, vol. 10(2), pages 131-153, October.
    12. Graham Loomes, 2005. "Modelling the Stochastic Component of Behaviour in Experiments: Some Issues for the Interpretation of Data," Experimental Economics, Springer;Economic Science Association, vol. 8(4), pages 301-323, December.
    13. Fishburn, Peter C, 1978. "A Probabilistic Expected Utility Theory of Risky Binary Choices," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 19(3), pages 633-46, October.
    14. Harless, David W & Camerer, Colin F, 1994. "The Predictive Utility of Generalized Expected Utility Theories," Econometrica, Econometric Society, vol. 62(6), pages 1251-89, November.
    15. Ondřej Rydval & Andreas Ortmann & Sasha Prokosheva & Ralph Hertwig, 2009. "How certain is the uncertainty effect?," Experimental Economics, Springer;Economic Science Association, vol. 12(4), pages 473-487, December.
    16. Charles A. Holt & Susan K. Laury, 2002. "Risk Aversion and Incentive Effects," American Economic Review, American Economic Association, vol. 92(5), pages 1644-1655, December.
    17. Gijs Kuilen & Peter Wakker, 2006. "Learning in the Allais paradox," Journal of Risk and Uncertainty, Springer, vol. 33(3), pages 155-164, December.
    18. David J. Butler & Graham C. Loomes, 2007. "Imprecision as an Account of the Preference Reversal Phenomenon," American Economic Review, American Economic Association, vol. 97(1), pages 277-297, March.
    19. Blavatskyy, Pavlo R., 2008. "Stochastic utility theorem," Journal of Mathematical Economics, Elsevier, vol. 44(11), pages 1049-1056, December.
    20. Pavlo Blavatskyy, 2007. "Stochastic expected utility theory," Journal of Risk and Uncertainty, Springer, vol. 34(3), pages 259-286, June.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:57:y:2011:i:3:p:542-548. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.