IDEAS home Printed from https://ideas.repec.org/p/oeg/wpaper/2016-06.html
   My bibliography  Save this paper

A spatial approach to control for unobserved environmental conditions when measuring firms’ technology: an application to Norwegian electricity distribution networks

Author

Listed:
  • Orea, Luis
  • Álvarez, Inmaculada C.
  • Jamasb, Tooraj

Abstract

An important methodological issue for the use of efficiency analysis in incentive regulation of regulated utilities is how to account for the effect of unobserved cost drivers such as environmental factors. This study combines the spatial econometric approach with stochastic frontier techniques to control for unobserved environmental conditions when measuring firms’ efficiency in the electricity distribution sector. Our empirical strategy relies on the geographic location of the firms as a useful source of information that has previously not been explored in the literature. The underlying idea in our empirical proposal is to utilise variables from neighbouring firms that are likely to be spatially correlated as proxies for the unobserved cost drivers. We illustrate our approach using the data of Norwegian distribution utilities for the years 2004 to 2011. We find that the lack of information on weather and geographic conditions can likely be compensated with data from surrounding firms using spatial econometric techniques. Combining efficiency analysis and spatial econometrics methods improve the goodness-of-fit of the estimated models and, hence, more accurate (fair) efficiency scores are obtained. The methodology can also be used in efficiency analysis and regulation of other types of utility sectors.

Suggested Citation

  • Orea, Luis & Álvarez, Inmaculada C. & Jamasb, Tooraj, 2016. "A spatial approach to control for unobserved environmental conditions when measuring firms’ technology: an application to Norwegian electricity distribution networks," Efficiency Series Papers 2016/06, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
  • Handle: RePEc:oeg:wpaper:2016/06
    as

    Download full text from publisher

    File URL: https://www.unioviedo.es/oeg/ESP/esp_2016_06.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    2. Wang, Hung-Jen & Ho, Chia-Wen, 2010. "Estimating fixed-effect panel stochastic frontier models by model transformation," Journal of Econometrics, Elsevier, vol. 157(2), pages 286-296, August.
    3. Haney, Aoife Brophy & Pollitt, Michael G., 2013. "International benchmarking of electricity transmission by regulators: A contrast between theory and practice?," Energy Policy, Elsevier, vol. 62(C), pages 267-281.
    4. V L Miguéis & A S Camanho & E Bjørndal & M Bjørndal, 2012. "Productivity change and innovation in Norwegian electricity distribution companies," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(7), pages 982-990, July.
    5. Growitsch, Christian & Jamasb, Tooraj & Wetzel, Heike, 2012. "Efficiency effects of observed and unobserved heterogeneity: Evidence from Norwegian electricity distribution networks," Energy Economics, Elsevier, vol. 34(2), pages 542-548.
    6. Wang, Hung-Jen, 2003. "A Stochastic Frontier Analysis of Financing Constraints on Investment: The Case of Financial Liberalization in Taiwan," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(3), pages 406-419, July.
    7. Haney, A.B. & Pollitt, M.G., 2012. "International benchmarking of Electricity Transmission by Regulators: Theory and Practice," Cambridge Working Papers in Economics 1254, Faculty of Economics, University of Cambridge.
    8. Llorca, Manuel & Orea, Luis & Pollitt, Michael G., 2014. "Using the latent class approach to cluster firms in benchmarking: An application to the US electricity transmission industry," Operations Research Perspectives, Elsevier, vol. 1(1), pages 6-17.
    9. Greene, William & Orea, Luis & Wall, Alan, 2011. "A one-stage random effect counterpart of the fixed-effect vector decomposition model with an application to UK electricity distribution utilities," Efficiency Series Papers 2011/01, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    10. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oeg:wpaper:2016/06. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Luis Orea) or (Alberto Gude). General contact details of provider: http://edirc.repec.org/data/geovies.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.